首页 >
次协调逻辑
✍ dations ◷ 2024-11-05 16:37:21 #次协调逻辑
次协调逻辑是尝试处理矛盾的逻辑。次协调逻辑是不琐碎的(non-trivial)逻辑,它允许矛盾。更加特殊的,它允许断言一个陈述和它的否定,而不导致谬论。在标准逻辑中,从矛盾中可以推导出任何东西;这叫做ex contradictione quodlibet(ECQ),也叫做爆炸原理。次协调逻辑就是ECQ不成立的逻辑系统。次协调逻辑可以用来建模有矛盾的信仰系统,但不是任何东西都能从它推导出来的。在标准逻辑中,必须小心的防止形成说谎者悖论的陈述;次协调逻辑由于不需要排除这种陈述而更加简单(尽管它仍然必须排除Curry悖论)。此外,次协调逻辑可以潜在的克服哥德尔不完备定理蕴涵的算术限制,而是完备的。发明次协调逻辑有很多动机,它们都引起对经典逻辑的会导致反直觉结果的协调性(一致性)的不满足。语义悖论,特别是自引用,提供了质问经典逻辑的形式根据。考虑说谎者悖论(这里的"<L>"表示"L这个命题"):看起来它说的事情同于(这种推理基于几个相当似是而非的但公认不是无懈可击的前提,关于双重否定除去的和在<P>和P之间联系--就是说在命题和命题所对应的事态之间的联系。粗略的说,我们称这种关系为"真理",所以我们能够在某种意义上,移入和移出引号和标记命题的括号)。并且,如果我们继续运做在关于真理本质的无可置疑的质朴假定之上,则L看起来是L' 的否定。所以,这是一个矛盾。(集合论和高阶逻辑的罗素悖论缘于类似的问题。)经典逻辑(或者更一般的说协调逻辑)的坚定支持者可以简单的忽略这种问题,或者简单的说像L这样的句子是无意义的。可以理解的,次协调逻辑学家机警的接受了这些句子;毕竟,"这个句子是假的"好像是完全连贯的甚至发人深省的句子。接受遵照像L这样的句子和它的外在否定L' 同样是真理的立场,是摆脱这种语义悖论的一种可能方式。次协调逻辑双面真理说的支持者Graham Priest,提供了一个例子,以表示无矛盾律和双面真理说对前提定义的看法差异:“一位站在门口的人一半在门里一半在门外。”对于"我在屋里"和与它否定的"我不在屋里"的逻辑辨证,无矛盾律认为“站在门口的人并非完全在屋内,故只属于"我不在屋里"且不属于"我在屋里"”;双面真理说则同时支持"我在屋里"和"我不在屋里"为真。可以看出,相对于无矛盾律的严格前提相信逻辑函数单射;双面真理说则相信逻辑命题属于四值概念(见相干逻辑)。要注意的是,这里无矛盾律的主张并非排中律,因为这个命题有真值。在经典逻辑中,句子的集合
Λ
{displaystyle Lambda }
被称为是否定矛盾(不协调)的,如果对于某些句子
P
{displaystyle P}
,
Λ
⊢
P
{displaystyle Lambda vdash P}
并且
Λ
⊢
¬
P
{displaystyle Lambda vdash neg P}
。在经典逻辑中,在逻辑语言内任何句子都可以从否定矛盾集合中推导出来。类似的模型理论性质对经典逻辑是成立的。这叫做爆炸原理,因为一个单一的矛盾就确保推理可以在任何任意方向上进行。经典逻辑、直觉逻辑和多数其他逻辑遭受着这个问题。开发次协调逻辑是为了避免爆炸原理的有害效果。为了解决这个问题,次协调逻辑可以简单的拒绝爆炸原理。当然,这么做可不是平凡的事情。爆炸是我们析取的真值泛函概念的直接推论;要拒绝前者必然把问题带给后者,而它好像是良基的(well-founded)。一些次协调逻辑:在知识表现中,对可废止推理系统做了很多关注,它们可以支持在更充分的证据可获得的时候否决以前的结论。可以证明可废止逻辑是次协调的。次协调逻辑也可以用做次协调数学的基础,它允许矛盾而不使所有陈述成为可推导的结论。
相关
- 犯罪美国联邦调查局和美国司法统计局每年都会发布美国犯罪数据统计,联邦调查局每年都会将各个执法机构的案件汇集起来,发布成《统一犯罪报告(英语:Uniform Crime Reports)》。考虑到
- 保加利亚面积以下资讯是以2018年估计家用电源国家领袖国内生产总值(购买力平价) 以下资讯是以2018年估计国内生产总值(国际汇率) 以下资讯是以2018年估计人类发展指数 以下资讯是以2018
- 工业与组织心理学异常心理学 行为遗传学 生物心理学 心理药物学 认知心理学 比较心理学 跨文化心理学 文化心理学 差异心理学(英语:Differential psychology) 发展心理学 演化心理学 实验心理学
- 中世纪哲学中世纪哲学(Medieval Philosophy)是指中世纪的哲学相关发展,时间大约从5世纪西罗马帝国灭亡至14世纪文艺复兴时代开始为止。中世纪哲学从8世纪时被巴格达视为独立哲学议题,法国
- 小波兰小波兰(波兰语:Małopolska,拉丁语:Polonia Minor)是波兰的历史地区之一,位于波兰的东南角。该地区不能与小波兰省相混淆,该省只包括小波兰历史地区的一部分。小波兰位于维斯瓦河上
- 武汉市政府1999年规定:印章直径4.5厘米,中央刊国徽,由湖北省人民政府制发。武汉市市标位于沿江大道的武汉市人民政府中国共产党武汉市委员会武汉市人民代表大会武汉市人民代表大会常务委
- 跖疣跖疣(verruca plantaris)是发生在足底部的寻常疣,是一种发生在足跟、跖(脚趾hi)骨头或跖(脚趾)间、脚掌的赘生物。西方医学称为跖疣,还有多种如“足疣”“刺瘊”的民间说法。是由人
- 血管新生血管新生(英文:Angiogenesis)是一个生理上新的微血管发展成一个血流供应系统的过程。而Vasculogenesis通常指自发性的血管形成,另外Intussusception则是指较一般快速形成的血管
- 卡尔曼综合征卡尔曼综合征(英语:Kallmann syndrome)是一种罕见的遗传性疾病,其特点患者是无法进入青春期或青春期发育不完全。该疾病也伴随着嗅觉丧失或嗅觉减退。此种疾病男女皆可发病,但多
- 同形字同形字又称重形字,最广义的同形字就是写法(字形)相同义项不同的字即可称为同形字(参见多义字)。但也有学者不认同这种宽泛的定义,一部分学者认为“同形字”必须写法相同读音不同(参