首页 >
黄金分割
✍ dations ◷ 2025-04-25 13:30:49 #黄金分割
黄金比例,又称黄金分割,是一个数学常数,一般以希腊字母
φ
{displaystyle varphi }
表示。可以透过以下代数式定义:这也是黄金比例一名的由来。
黄金比例的准确值为
1
+
5
2
{displaystyle {frac {1+{sqrt {5}}}{2}}}
,所以是无理数,而大约值则为(小数点后20位, A001622):应用时一般取1.618,就像圆周率在应用时取3.14159一样。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,而且呈现于不少动物和植物的外观。现今很多工业产品、电子产品、建筑物或艺术品均普遍应用黄金分割,展现其实用性与美观性。黄金比例是属于数学领域的一个专有名词,但是它最后涵盖的内容不只是有关数学领域的研究,根据目前的文献探讨,我们可以说,黄金比例的发现和如何演进至今仍然是一个谜。但有研究指出公元前6世纪古希腊的毕达哥拉斯学派研究过正5边形和正10边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割的一些规则,也发现无理数。他侧重于从数学关系去探讨美的规律,并认为美就是和谐与比例,按照这种比例关系就可以组成美的图案,这其实是一个数字的比例关系,即将一条线分成两部分,较长的一段与较短的一段之比等于全长与较长的一段之比,它们的比例大约是1.618:1,知名的费氏数列也体现了这个数学原则,按此种比例关系组成的任何事物都表现出其内部关系的和谐与均衡。公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著(即中末比)。中世纪后,黄金分割被披上神秘的外衣,意大利数学家卢卡·帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家约翰内斯·开普勒称神圣比例为黄金分割。到19世纪黄金分割这一名称才逐渐通行,而证据在于德国数学家马丁·欧姆(英语:Martin Ohm)所写的《基本纯数学》第2版注释中写到有关黄金比例的解释:“人们习惯把按此方式将任一直线分割成两部分的方法,称为黄金分割”。而在1875年出版的《大英百科全书》的第9版中,苏利有提到:“由费区那……提出的有趣、实验性浓厚的想法宣称,‘黄金分割’在视觉比例上具有所谓的优越性。”可见黄金分割在当时已经流行了。20世纪时美国数学家马克·巴尔(英语:Mark Barr)给它个名字叫phi。黄金分割有许多有趣的性质,人类对它的实际应用也很广泛,造就了它今天的名气。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家杰克·基弗(英语:Jack Kiefer (statistician))于1953年首先提出的,70年代在中国推广。两个数值
a
{displaystyle a}
和
b
{displaystyle b}
构成黄金比例
φ
{displaystyle varphi }
,如果:
a
+
b
a
=
a
b
=
φ
{displaystyle {frac {a+b}{a}}={frac {a}{b}}=varphi }一个得出
φ
{displaystyle varphi }
数值的方法是从左边的分数式入手。经过简化和代入,于是:两边乘以
φ
{displaystyle varphi }
就得到:即是
φ
2
−
φ
−
1
=
0
{displaystyle {varphi }^{2}-varphi -1=0}找出该方程的正解,黄金分割奇妙之处,在于其倒数为自身减1,即:1.618...的倒数为
0.618
…
=
1.618
…
−
1
{displaystyle 0.618ldots =1.618ldots -1}
,并时常被称为“黄金比例共轭”。从上面的
1
+
1
φ
=
φ
{displaystyle 1+{frac {1}{varphi }}=varphi }
得到:这个0.618...的数值常用希腊字母
Φ
{displaystyle Phi }
表示,即:公式
φ
=
1
+
1
φ
{displaystyle varphi =1+{frac {1}{varphi }}}
可以被递归扩展来获得黄金比例的连分数:而它的倒数是:平方根表示:以三角函数的特殊值表示:即是:黄金矩形鹦鹉螺的内部结构帕提农神庙最后的晚餐联合国总部大楼向日葵蝴蝶花纹贵金属分割即
n
+
n
2
+
4
2
{displaystyle {frac {n+{sqrt {n^{2}+4}}}{2}}}
,其中
n
{displaystyle n}
为正整数。
n
=
1
{displaystyle n=1}
时为黄金分割(
1
+
5
2
{displaystyle {frac {1+{sqrt {5}}}{2}}}
),
n
=
2
{displaystyle n=2}
时为白银分割(
1
+
2
{displaystyle 1+{sqrt {2}}}
),
n
=
3
{displaystyle n=3}
时为青铜分割(
3
+
13
2
{displaystyle {frac {3+{sqrt {13}}}{2}}}
)。用连分数可表示为
n
+
1
n
+
1
n
+
1
n
+
1
⋱
=
[
n
;
n
,
n
,
n
,
n
,
…
]
{displaystyle n+{cfrac {1}{n+{cfrac {1}{n+{cfrac {1}{n+{cfrac {1}{ddots }}}}}}}}=}
相关
- 唐纳德·威尼科特唐诺·伍兹·温尼考特(Donald Woods Winnicott,1896年4月7日-1971年1月28日),英国儿童心理学家、精神分析学家,对客体关系理论有一定贡献。他在40年的时间里研究人类成长,希望阐明
- 责任制责任制(Exempt Employee)存在某些工作职位上,原本是指管理、高阶、专业人士,或是创意工作者,因为本身的特殊性质,而不必受到固定上下班时间限制,完成自己负责的工作后即可下班,不需
- 促红细胞生成素1BUY, 1CN4, 1EER· hormone activity · protein binding· regulation of transcription from RNA polymerase II promoter · signal transduction · embryo implant
- 巛巛部,为汉字索引里为部首之一,康熙字典214个部首中的第四十七个(三划的则为第十八个)。就繁体和简体中文中,巛部归于三划部首。巛部通常是从上、下方及中间均可为部字,且无其他部
- 醋酸钠乙酸钠(英语:Sodium acetate,化学式:CH3COONa),又名醋酸钠,晶体有无水和三水合物两种形式。无水醋酸钠(CH3COONa)为白色或灰白色的粉末,比重1.528,熔点324℃,溶于水,难溶于有机溶剂,水溶液
- 可变剪接选择性剪接(英语:Alternative splicing;又称“可变剪接”)是基因表达的方式,在复杂的动物例如人类细胞是非常普遍的。真核细胞的基因序列中,包含了内含子(intron)与外显子(exon),两者交
- 高尔夫球高尔夫,又称高球,高尔夫球,歌尔夫球,高而富球,俗称小白球,是一种室外体育运动。个人或团体球员以高尔夫球杆将一颗小球打进球洞,使用杆数较少者获胜。大部分的比赛有九洞或十八洞。
- 衍射效应衍射(英语:diffraction),又称绕射,是指波遇到障碍物时偏离原来直线传播的物理现象。:559-560在经典物理学中,波在穿过狭缝、小孔或圆盘之类的障碍物后会发生不同程度的弯散传播。
- 德国饮食文化德国饮食文化是指德国国内和日耳曼人的饮食习惯。德国由于身处欧洲大陆之中心,饮食文化与内陆地区之物产分布息息相关。整体上德国人较为爱好肉类。其中德国人非常爱吃猪肉,大
- 实际气体状态方程范德华方程(van der Waals equation)(一译范德瓦耳斯方程),简称范氏方程,是荷兰物理学家范德华于1873年提出的一种实际气体状态方程。范氏方程是对理想气体状态方程的一种改进,特点