黄金分割

✍ dations ◷ 2025-09-03 07:02:57 #黄金分割
黄金比例,又称黄金分割,是一个数学常数,一般以希腊字母 φ {displaystyle varphi } 表示。可以透过以下代数式定义:这也是黄金比例一名的由来。 黄金比例的准确值为 1 + 5 2 {displaystyle {frac {1+{sqrt {5}}}{2}}} ,所以是无理数,而大约值则为(小数点后20位, A001622):应用时一般取1.618,就像圆周率在应用时取3.14159一样。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,而且呈现于不少动物和植物的外观。现今很多工业产品、电子产品、建筑物或艺术品均普遍应用黄金分割,展现其实用性与美观性。黄金比例是属于数学领域的一个专有名词,但是它最后涵盖的内容不只是有关数学领域的研究,根据目前的文献探讨,我们可以说,黄金比例的发现和如何演进至今仍然是一个谜。但有研究指出公元前6世纪古希腊的毕达哥拉斯学派研究过正5边形和正10边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割的一些规则,也发现无理数。他侧重于从数学关系去探讨美的规律,并认为美就是和谐与比例,按照这种比例关系就可以组成美的图案,这其实是一个数字的比例关系,即将一条线分成两部分,较长的一段与较短的一段之比等于全长与较长的一段之比,它们的比例大约是1.618:1,知名的费氏数列也体现了这个数学原则,按此种比例关系组成的任何事物都表现出其内部关系的和谐与均衡。公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著(即中末比)。中世纪后,黄金分割被披上神秘的外衣,意大利数学家卢卡·帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家约翰内斯·开普勒称神圣比例为黄金分割。到19世纪黄金分割这一名称才逐渐通行,而证据在于德国数学家马丁·欧姆(英语:Martin Ohm)所写的《基本纯数学》第2版注释中写到有关黄金比例的解释:“人们习惯把按此方式将任一直线分割成两部分的方法,称为黄金分割”。而在1875年出版的《大英百科全书》的第9版中,苏利有提到:“由费区那……提出的有趣、实验性浓厚的想法宣称,‘黄金分割’在视觉比例上具有所谓的优越性。”可见黄金分割在当时已经流行了。20世纪时美国数学家马克·巴尔(英语:Mark Barr)给它个名字叫phi。黄金分割有许多有趣的性质,人类对它的实际应用也很广泛,造就了它今天的名气。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家杰克·基弗(英语:Jack Kiefer (statistician))于1953年首先提出的,70年代在中国推广。两个数值 a {displaystyle a} 和 b {displaystyle b} 构成黄金比例 φ {displaystyle varphi } ,如果: a + b a = a b = φ {displaystyle {frac {a+b}{a}}={frac {a}{b}}=varphi }一个得出 φ {displaystyle varphi } 数值的方法是从左边的分数式入手。经过简化和代入,于是:两边乘以 φ {displaystyle varphi } 就得到:即是 φ 2 − φ − 1 = 0 {displaystyle {varphi }^{2}-varphi -1=0}找出该方程的正解,黄金分割奇妙之处,在于其倒数为自身减1,即:1.618...的倒数为 0.618 … = 1.618 … − 1 {displaystyle 0.618ldots =1.618ldots -1} ,并时常被称为“黄金比例共轭”。从上面的 1 + 1 φ = φ {displaystyle 1+{frac {1}{varphi }}=varphi } 得到:这个0.618...的数值常用希腊字母 Φ {displaystyle Phi } 表示,即:公式 φ = 1 + 1 φ {displaystyle varphi =1+{frac {1}{varphi }}} 可以被递归扩展来获得黄金比例的连分数:而它的倒数是:平方根表示:以三角函数的特殊值表示:即是:黄金矩形鹦鹉螺的内部结构帕提农神庙最后的晚餐联合国总部大楼向日葵蝴蝶花纹贵金属分割即 n + n 2 + 4 2 {displaystyle {frac {n+{sqrt {n^{2}+4}}}{2}}} ,其中 n {displaystyle n} 为正整数。 n = 1 {displaystyle n=1} 时为黄金分割( 1 + 5 2 {displaystyle {frac {1+{sqrt {5}}}{2}}} ), n = 2 {displaystyle n=2} 时为白银分割( 1 + 2 {displaystyle 1+{sqrt {2}}} ), n = 3 {displaystyle n=3} 时为青铜分割( 3 + 13 2 {displaystyle {frac {3+{sqrt {13}}}{2}}} )。用连分数可表示为 n + 1 n + 1 n + 1 n + 1 ⋱ = [ n ; n , n , n , n , … ] {displaystyle n+{cfrac {1}{n+{cfrac {1}{n+{cfrac {1}{n+{cfrac {1}{ddots }}}}}}}}=}

相关

  • 多囊性卵巢症候群多囊性卵巢综合症(Polycystic ovary syndrome,简称PCOS),又称斯-李二氏症(Stein-Leventhal syndrome),是一连串女性因为雄性激素上升所导致的症状。多囊性卵巢的症状包含月经不规律
  • 黄道黄道是太阳在天球上的视运动轨迹,它是黄道坐标系的基准。另外,黄道也指太阳视运动轨迹所在的平面,它和地球绕太阳的轨道共面(看起来像是太阳绕着地球转)。太阳的视运动轨迹并不能
  • 蒂迈欧篇《蒂迈欧篇》(Timaeus)是古希腊哲学家柏拉图的一部作品,大概写于公元前360年。以苏格拉底、赫莫克拉提斯、克里提亚斯等哲学家的对话形式,试图去阐明宇宙万物的真理。其中提出了
  • 文观部式文化观光部2000年式,亦称国语罗马字表记法(朝鲜语:국어의 로마자 표기법/國語의 로마字表記法 Gug-eoui lomaja pygogibeob)为现在韩国所使用的韩国语(谚文)拉丁文字转写规则。200
  • 沃尔夫冈·泡利沃尔夫冈·欧内斯特·泡利(德语:Wolfgang Ernst Pauli,1900年4月25日-1958年12月15日),奥地利理论物理学家,是量子力学研究先驱者之一。1945年,在爱因斯坦的提名下,他因泡利不相容原
  • 葛均波葛均波(1962年11月-),山东五莲人,中国心血管病学家,同济大学副校长,复旦大学附属中山医院教授。1984年毕业于青岛医学院,1987年获山东医科大学硕士学位,1993年于德国美因茨大学获博士
  • 凯特勒凯特勒(Lambert Adolphe Jacques Quetelet,1796年-1874年),19世纪比利时的通才,他既是统计学家、又是数学家和天文学家。他从统计学角度出发看人,认为人的成长是会依从一套既定的法
  • 掠食动物捕食(英语:Predation,或称猎食或掠食)是生态学中一种生物互动方式,在这种方式中,捕食者会捕食其他的生命,而这些被捕食者则称为猎物。在进食或行动的过程里,捕食者不一定会杀死它们
  • 地球图辑队天空传媒股份有限公司,前身为网络数码股份有限公司(webs-tv inc.),成立于1997年。当前拥有门户网站、宽带上网、影片租借等娱乐传播事业。网络数码股份有限公司(webs-tv inc.)于19
  • 观察仪器观测仪器(viewing instrument)是用于查看或检查物件或场景,或某种电子属性或信号的设备。在某些情况下,查看的可能是抽象的数学。在英许系的地区,许多观测仪器的名称都来自英语的