黄金分割

✍ dations ◷ 2025-10-26 13:24:58 #黄金分割
黄金比例,又称黄金分割,是一个数学常数,一般以希腊字母 φ {displaystyle varphi } 表示。可以透过以下代数式定义:这也是黄金比例一名的由来。 黄金比例的准确值为 1 + 5 2 {displaystyle {frac {1+{sqrt {5}}}{2}}} ,所以是无理数,而大约值则为(小数点后20位, A001622):应用时一般取1.618,就像圆周率在应用时取3.14159一样。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,而且呈现于不少动物和植物的外观。现今很多工业产品、电子产品、建筑物或艺术品均普遍应用黄金分割,展现其实用性与美观性。黄金比例是属于数学领域的一个专有名词,但是它最后涵盖的内容不只是有关数学领域的研究,根据目前的文献探讨,我们可以说,黄金比例的发现和如何演进至今仍然是一个谜。但有研究指出公元前6世纪古希腊的毕达哥拉斯学派研究过正5边形和正10边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割的一些规则,也发现无理数。他侧重于从数学关系去探讨美的规律,并认为美就是和谐与比例,按照这种比例关系就可以组成美的图案,这其实是一个数字的比例关系,即将一条线分成两部分,较长的一段与较短的一段之比等于全长与较长的一段之比,它们的比例大约是1.618:1,知名的费氏数列也体现了这个数学原则,按此种比例关系组成的任何事物都表现出其内部关系的和谐与均衡。公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著(即中末比)。中世纪后,黄金分割被披上神秘的外衣,意大利数学家卢卡·帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家约翰内斯·开普勒称神圣比例为黄金分割。到19世纪黄金分割这一名称才逐渐通行,而证据在于德国数学家马丁·欧姆(英语:Martin Ohm)所写的《基本纯数学》第2版注释中写到有关黄金比例的解释:“人们习惯把按此方式将任一直线分割成两部分的方法,称为黄金分割”。而在1875年出版的《大英百科全书》的第9版中,苏利有提到:“由费区那……提出的有趣、实验性浓厚的想法宣称,‘黄金分割’在视觉比例上具有所谓的优越性。”可见黄金分割在当时已经流行了。20世纪时美国数学家马克·巴尔(英语:Mark Barr)给它个名字叫phi。黄金分割有许多有趣的性质,人类对它的实际应用也很广泛,造就了它今天的名气。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家杰克·基弗(英语:Jack Kiefer (statistician))于1953年首先提出的,70年代在中国推广。两个数值 a {displaystyle a} 和 b {displaystyle b} 构成黄金比例 φ {displaystyle varphi } ,如果: a + b a = a b = φ {displaystyle {frac {a+b}{a}}={frac {a}{b}}=varphi }一个得出 φ {displaystyle varphi } 数值的方法是从左边的分数式入手。经过简化和代入,于是:两边乘以 φ {displaystyle varphi } 就得到:即是 φ 2 − φ − 1 = 0 {displaystyle {varphi }^{2}-varphi -1=0}找出该方程的正解,黄金分割奇妙之处,在于其倒数为自身减1,即:1.618...的倒数为 0.618 … = 1.618 … − 1 {displaystyle 0.618ldots =1.618ldots -1} ,并时常被称为“黄金比例共轭”。从上面的 1 + 1 φ = φ {displaystyle 1+{frac {1}{varphi }}=varphi } 得到:这个0.618...的数值常用希腊字母 Φ {displaystyle Phi } 表示,即:公式 φ = 1 + 1 φ {displaystyle varphi =1+{frac {1}{varphi }}} 可以被递归扩展来获得黄金比例的连分数:而它的倒数是:平方根表示:以三角函数的特殊值表示:即是:黄金矩形鹦鹉螺的内部结构帕提农神庙最后的晚餐联合国总部大楼向日葵蝴蝶花纹贵金属分割即 n + n 2 + 4 2 {displaystyle {frac {n+{sqrt {n^{2}+4}}}{2}}} ,其中 n {displaystyle n} 为正整数。 n = 1 {displaystyle n=1} 时为黄金分割( 1 + 5 2 {displaystyle {frac {1+{sqrt {5}}}{2}}} ), n = 2 {displaystyle n=2} 时为白银分割( 1 + 2 {displaystyle 1+{sqrt {2}}} ), n = 3 {displaystyle n=3} 时为青铜分割( 3 + 13 2 {displaystyle {frac {3+{sqrt {13}}}{2}}} )。用连分数可表示为 n + 1 n + 1 n + 1 n + 1 ⋱ = [ n ; n , n , n , n , … ] {displaystyle n+{cfrac {1}{n+{cfrac {1}{n+{cfrac {1}{n+{cfrac {1}{ddots }}}}}}}}=}

相关

  • 退伍军人菌属Legionella adelaidensis Legionella anisa Legionella beliardensis Legionella birminghamensis Legionella bozemanii Legionella brunensis Legionella busanensis Legi
  • 头孢泊肟酯头孢泊肟酯(英语:Cefpodoxime Proxetil),是一种第三代头孢菌素。 它对绝大多数的革兰氏阳性和革兰氏阳阴性的生物都有作用,除了绿脓杆菌、肠球菌和脆弱拟杆菌(英语:Bacteroides fra
  • 科尔萨科夫氏症候群科尔萨科夫氏症候群(Korsakoff's syndrome),又称健忘综合征,为一种大脑缺乏硫胺(维生素B1)而引起的精神障碍。其疾病由俄国神经学家谢尔盖·科尔萨科夫最先发现而命名。科尔萨科夫
  • 苏糖苏糖(英语:Threose,C4H8O4)在分类上属于丁糖与醛糖,从费希尔式的角度看,中间两个碳原子上的羟基在碳骨架的异侧。有机化学的习惯命名法中,使用“苏”或“苏式”("threo")表示相邻两碳
  • 乔舒亚·莱德伯格乔舒亚·莱德伯格(Joshua Lederberg,1925年5月23日-2008年2月2日),美国分子生物学家,主要研究方向为遗传学、人工智能和太空探索。因发现细菌遗传物质及基因重组现象而获得1958年
  • 晶系晶体通常可以分为七个不同的晶系,即立方晶系、六方晶系、四方晶系、三方晶系、正交晶系、单斜晶系、三斜晶系。其中的立方晶系具有各向同性,属于高级晶族。晶系的特征与细分关
  • 乙二硫醇乙二硫醇、1,2-乙二硫醇,分子式为C2H4(SH)2,室温下为无色有气味的液体。可用于有机合成试剂和螯合配体。乙二硫醇比乙二醇反应性更强,更易与醛和酮反应生成缩硫醛/酮。后者是有
  • 共同体共同体(英语:commonwealth),一个传统的英语名词,为一种政治共同体(community),为了促进共同的利益而成立。在传统上,它与共和主义(republicanism)同义,可被用来指单一的共和国,因此在这种
  • 板甲板甲(英语:Plate armour)是以金属制成的一整块金属板盔甲、用于保护全身。从古典时期就开始使用,盛行于中古欧洲封建时代。古希腊罗马时期使用青铜材料,14世纪出现了用熟铁浇铸的
  • 克尔曼沙汗克尔曼沙汗省(波斯语:كرمانشاه)是伊朗三十个省份之一。面积24,6417公里,在所有省份中排行第15。人口约1,938,000(2005年数据);首府位于克尔曼沙赫市。克尔曼沙汗省位于