休克尔方法

✍ dations ◷ 2025-01-11 17:14:37 #分子物理学,分子轨道理论

休克尔方法(英语:Hückel method),又称休克尔分子轨道法(英语:Hückel molecular orbital method,缩写:HMO),是1930年埃里希·休克尔提出的一个计算分子轨道及能級的方式。

休克尔方法属于原子轨道线性组合(LCAO-MO)的能量计算方法,如:乙烯、苯、丁二烯的分子π轨道的能量的计算。该方法的结论是休克尔规则的基础。休克尔方法有一个扩展的理论,是为罗德·霍夫曼提出的扩展休克尔方法(英语:Extended Hückel method),是用来计算π轨道的三维能量状态,也被用来测试分子轨道对称守恒原理。它后来被扩展到含有杂原子的共轭分子,例如:吡啶、吡咯和呋喃。

此理论常做为教学上的例子在许多化学教科书中出现并详细介绍。

休克尔方法有几个性质:

休克尔法对一些简单分子的计算结果如下:

根据以上结果,丁二烯离域π键4个能级能量各不相同,基态时π电子占据能量最低的两个轨道;而环丁二烯的有两个能量相同的简并轨道,基态时各占据一个电子,成为单电子轨道。至于苯的6个能级中有两对是简并的。

链状和环状共轭系统,各能级能量有以下通式:

环状体系的能级排布可用Frost助记图(Frost circle mnemonic)表示。此图中,圆心的位置能量对应为α,圆的半径对应能量为2β,以最底端(能量α+2β)为一顶点做原内接正多边形,每个顶点所对应的能量即为该环状体系各个能级的能量。对于链状体系也有类似的助记图。

休克尔法的许多结论已被实验证实:

休克尔法是里茨法(英语:Ritz method)用于特定体系进一步简化的结果。对其中的哈密顿矩阵和重叠矩阵做了激进的近似:

假定为单位矩阵,意味着忽略轨道间的重叠积分,认为各p轨道是相互正交的,以便于将Ritz法的久期方程简化为普通的求特征值问题。

至于 = ()分情况做如下处理:

哈密顿矩阵的各特征值为每个分子轨道能级的能量,而对应的特征向量为原子轨道线性组合的系数。对于不含杂原子的体系,休克尔法没有任何引入任何参数,而有杂原子的体系(例如吡啶),参数AAB则需要用其它方法事先获知。

休克尔法对乙烯的处理,首先假定其π键的分子轨道 Ψ {\displaystyle \Psi \,} 是2p原子轨道 ϕ 1 , ϕ 2 {\displaystyle \phi _{1},\phi _{2}} 的线性组合:

代入薛定谔方程

其中 H {\displaystyle H\,} 是哈密顿算符, E {\displaystyle E\,} 是分子轨道对应的能量本征值,得

等式两边乘上 ϕ 1 {\displaystyle \phi _{1}\,} 并积分,得到

类似地,等式两边乘上 ϕ 2 {\displaystyle \phi _{2}\,} 并积分,得到

其中

得到的是相对于系数的线性方程组,写作矩阵形式:

进一步简化成矩阵的乘积:

如前所述,哈密顿矩阵的对角元素 H i i {\displaystyle H_{ii}\,} 称作库仑积分,而相邻原子轨道的交换积分 H i j {\displaystyle H_{ij}\,} 则称共振积分。休克尔法假定所有非零的共振积分都相等,且重叠积分是克罗内克函数, S i j = δ i j {\displaystyle S_{ij}=\delta _{ij}\,}

原方程用以上变量替换,得到齐次多项式

除以 β {\displaystyle \beta } ,化为

x {\displaystyle x} 表示 α E β {\displaystyle {\frac {\alpha -E}{\beta }}}

化成此形式是为了简化计算。各能量以及系数与x的关系:

线性方程组有非平凡解时,

行列式展开,解得 x = ± 1 {\displaystyle x=\pm 1\,}

于是各能级为

对应的,原子轨道系数满足

系数经归一化,得 c 1 = 1 2 , {\displaystyle c_{1}={\frac {1}{\sqrt {2}}},} ,因此解得分子轨道

β是负的,低能级轨道——即HOMO为 Ψ = 1 2 ( ϕ 1 + ϕ 2 ) {\displaystyle \Psi ={\frac {1}{\sqrt {2}}}(\phi _{1}+\phi _{2})\,} ,其能量为 α + β {\displaystyle \alpha +\beta } ;相应地,LUMO为 Ψ = 1 2 ( ϕ 1 ϕ 2 ) {\displaystyle \Psi ={\frac {1}{\sqrt {2}}}(\phi _{1}-\phi _{2})\,} ,其能量是 α β {\displaystyle \alpha -\beta }

休克尔法处理更复杂的分子,方法和乙烯是类似的。对于丁二烯,分子轨道是每个2p原子轨道的线性组合:

久期方程为

同样用 x {\displaystyle x} 表示 α E β {\displaystyle {\frac {\alpha -E}{\beta }}} ,得行列式

解得 x = ± 1.618 , ± 0.618 {\displaystyle x=\pm 1.618,\pm 0.618}

对于任意分子,以上久期行列式中对角元素为x,相邻的原子轨道对应的矩阵元素为1,其余为0。

相关

  • 盖br /层br /纪盖层纪(Calymmian,符号MP1)是地质时代中的一个纪,开始于同位素年龄1600±0百万年(Ma),结束于1400±0Ma。盖层纪期间蓝藻、绿藻发育,出现大型宏观藻类。盖层纪属于前寒武纪元古宙中
  • 安哥拉安哥拉华人,是最新来到安哥拉的移民,在过去的几十年里已经抵达安哥拉。数千名中国建筑工人,工程师,规划师和后勤人员包括医生和厨师住在安哥拉,使建筑业成为华人的领域。据安哥拉
  • myocardial infarction心肌梗死(Myocardial infarction简称MI、Acute myocardial infarction简称AMI),旧称心肌梗塞,是一种急性及严重的心脏状态。其成因是部分心肌的血液循环突然中断,心肌因无法得到
  • 台湾高等法院台中分院坐标:24°07′38″N 120°40′08″E / 24.12722°N 120.66889°E / 24.12722; 120.66889台湾高等法院台中分院(俗称台中高分院),是中华民国的二级法院之一,属于普通法院,行政组织
  • 约19科185属962种
  • 挪威诺贝尔委员会挪威诺贝尔委员会(挪威语:Den norske Nobelkomité,英语:Norwegian Nobel Committee),是一年一度的诺贝尔和平奖的评定机构。委员会成员有五名,全由挪威议会任命,成员全部是议会的议
  • KJALKJAL(585 AM)是位于美属萨摩亚的一个宗教广播电台,在2002年开播。发射地位于塔富纳,覆盖整个美属萨摩亚,属于亚太媒体部门。KJAL在早期称为WDJD,但是在美国联邦通信委员会的要求下
  • 基伏·斯托伊卡基伏·斯托伊卡(罗马尼亚语:Chivu Stoica,1908年8月8日-1975年2月18日),罗马尼亚政治家,罗马尼亚共产党成员,曾任罗马尼亚社会主义共和国部长会议主席(1955年-1961年)和罗马尼亚社会主
  • 王有龄王有龄(1810年-1861年),字英九,号雪轩,清代政治人物,福建省福州府侯官县人,云南丽江太守王燮之子,官至浙江巡抚,死于太平军之乱,追赠光禄大夫,谥壮愍。王有龄少年豪爽任侠,不好学,与何桂清
  • 欧盟军事欧盟军(EUFOR)是欧洲联盟一种象征性的军事联盟,但共同安全与防务政策比普通国与国间的军事同盟更深化,有共同的指挥体系和情报连结,在必要时组成单一军队,然而目前从未在真实战争