休克尔方法

✍ dations ◷ 2025-11-07 13:30:46 #分子物理学,分子轨道理论

休克尔方法(英语:Hückel method),又称休克尔分子轨道法(英语:Hückel molecular orbital method,缩写:HMO),是1930年埃里希·休克尔提出的一个计算分子轨道及能級的方式。

休克尔方法属于原子轨道线性组合(LCAO-MO)的能量计算方法,如:乙烯、苯、丁二烯的分子π轨道的能量的计算。该方法的结论是休克尔规则的基础。休克尔方法有一个扩展的理论,是为罗德·霍夫曼提出的扩展休克尔方法(英语:Extended Hückel method),是用来计算π轨道的三维能量状态,也被用来测试分子轨道对称守恒原理。它后来被扩展到含有杂原子的共轭分子,例如:吡啶、吡咯和呋喃。

此理论常做为教学上的例子在许多化学教科书中出现并详细介绍。

休克尔方法有几个性质:

休克尔法对一些简单分子的计算结果如下:

根据以上结果,丁二烯离域π键4个能级能量各不相同,基态时π电子占据能量最低的两个轨道;而环丁二烯的有两个能量相同的简并轨道,基态时各占据一个电子,成为单电子轨道。至于苯的6个能级中有两对是简并的。

链状和环状共轭系统,各能级能量有以下通式:

环状体系的能级排布可用Frost助记图(Frost circle mnemonic)表示。此图中,圆心的位置能量对应为α,圆的半径对应能量为2β,以最底端(能量α+2β)为一顶点做原内接正多边形,每个顶点所对应的能量即为该环状体系各个能级的能量。对于链状体系也有类似的助记图。

休克尔法的许多结论已被实验证实:

休克尔法是里茨法(英语:Ritz method)用于特定体系进一步简化的结果。对其中的哈密顿矩阵和重叠矩阵做了激进的近似:

假定为单位矩阵,意味着忽略轨道间的重叠积分,认为各p轨道是相互正交的,以便于将Ritz法的久期方程简化为普通的求特征值问题。

至于 = ()分情况做如下处理:

哈密顿矩阵的各特征值为每个分子轨道能级的能量,而对应的特征向量为原子轨道线性组合的系数。对于不含杂原子的体系,休克尔法没有任何引入任何参数,而有杂原子的体系(例如吡啶),参数AAB则需要用其它方法事先获知。

休克尔法对乙烯的处理,首先假定其π键的分子轨道 Ψ {\displaystyle \Psi \,} 是2p原子轨道 ϕ 1 , ϕ 2 {\displaystyle \phi _{1},\phi _{2}} 的线性组合:

代入薛定谔方程

其中 H {\displaystyle H\,} 是哈密顿算符, E {\displaystyle E\,} 是分子轨道对应的能量本征值,得

等式两边乘上 ϕ 1 {\displaystyle \phi _{1}\,} 并积分,得到

类似地,等式两边乘上 ϕ 2 {\displaystyle \phi _{2}\,} 并积分,得到

其中

得到的是相对于系数的线性方程组,写作矩阵形式:

进一步简化成矩阵的乘积:

如前所述,哈密顿矩阵的对角元素 H i i {\displaystyle H_{ii}\,} 称作库仑积分,而相邻原子轨道的交换积分 H i j {\displaystyle H_{ij}\,} 则称共振积分。休克尔法假定所有非零的共振积分都相等,且重叠积分是克罗内克函数, S i j = δ i j {\displaystyle S_{ij}=\delta _{ij}\,}

原方程用以上变量替换,得到齐次多项式

除以 β {\displaystyle \beta } ,化为

x {\displaystyle x} 表示 α E β {\displaystyle {\frac {\alpha -E}{\beta }}}

化成此形式是为了简化计算。各能量以及系数与x的关系:

线性方程组有非平凡解时,

行列式展开,解得 x = ± 1 {\displaystyle x=\pm 1\,}

于是各能级为

对应的,原子轨道系数满足

系数经归一化,得 c 1 = 1 2 , {\displaystyle c_{1}={\frac {1}{\sqrt {2}}},} ,因此解得分子轨道

β是负的,低能级轨道——即HOMO为 Ψ = 1 2 ( ϕ 1 + ϕ 2 ) {\displaystyle \Psi ={\frac {1}{\sqrt {2}}}(\phi _{1}+\phi _{2})\,} ,其能量为 α + β {\displaystyle \alpha +\beta } ;相应地,LUMO为 Ψ = 1 2 ( ϕ 1 ϕ 2 ) {\displaystyle \Psi ={\frac {1}{\sqrt {2}}}(\phi _{1}-\phi _{2})\,} ,其能量是 α β {\displaystyle \alpha -\beta }

休克尔法处理更复杂的分子,方法和乙烯是类似的。对于丁二烯,分子轨道是每个2p原子轨道的线性组合:

久期方程为

同样用 x {\displaystyle x} 表示 α E β {\displaystyle {\frac {\alpha -E}{\beta }}} ,得行列式

解得 x = ± 1.618 , ± 0.618 {\displaystyle x=\pm 1.618,\pm 0.618}

对于任意分子,以上久期行列式中对角元素为x,相邻的原子轨道对应的矩阵元素为1,其余为0。

相关

  • 联合国教育、科学及文化组织联合国教育、科学与文化组织(法语:Organisation des Nations unies pour l'éducation, la science et la culture,缩写作 ONUÉSC ; 英语:United Nations Educational, Scient
  • 人属人属(学名:Homo)是灵长目人科的一属。今天生活在世界上的现代人即智人是其唯一幸存的物种。然而,有一些学者认为,依DNA的差异性而言,黑猩猩属和人属,在生物学分类上,实在应该归为同
  • 棒球示范项目:1912、1936、1952、1956、1964、1984、1988棒球是一种团体球类运动,由人数最少为9人的两支队伍在一个扇形的球场进行攻击与守备。棒球球员分为攻、守两方,攻方球员利
  • 深圳万象城深圳华润·万象城(The Mixc),又名深圳万象城,简称万象城,位于中国深圳罗湖区,连接深圳地铁大剧院站,由华润置地有限公司旗下华润(深圳)有限公司经营。华润·万象城属深圳华润中心一期
  • 理查德·罗伯茨理查德·罗伯茨爵士(英语:Sir Richard John Roberts,1943年9月6日-),出生在德比,是一名英格兰生物化学家和分子生物学家。1993年,他夺得诺贝尔生理学或医学奖。他现任新英格兰生物实
  • 埃伦·约翰逊·瑟利夫埃伦·约翰逊·瑟利夫(英语:Ellen Johnson Sirleaf,1938年10月29日-)是利比里亚政治家。她是利比里亚联盟党(Unity Party)领袖,在2005年利比里亚总统大选中当选,是首位民选非洲国家女
  • 饼干镜蛤饼干镜蛤(学名:),是帘蛤目帘蛤科镜蛤属的一种。主要分布于越南、马来西亚、中国大陆,常栖息在潮间带至浅海30米深的砂质海底。
  • 孟加拉国性产业卖淫,在孟加拉国是合法的并受到监管,但妓女必须登记并签署一份宣誓书,声明她们是自愿选择卖淫并且无法找到任何其他工作。孟加拉国的妓女经常遭受贫困和社会上的歧视。卖淫在孟
  • 侯震侯震(1976年7月25日-),北京人。是侯宝林长子侯耀中的儿子,侯家第三代中唯一一位以相声为职业的,2006年加入北京德云社。
  • 百子莲亚科百子莲属百子莲亚科,属石蒜科,只有一属—百子莲属( L'Hér.)约十几种,原生于南非,作为观赏花卉被各地引种,都叫做百子莲。本属植物在克朗奎斯特分类法中被分入百合科,有的分类法将其