休克尔方法

✍ dations ◷ 2025-11-14 16:50:44 #分子物理学,分子轨道理论

休克尔方法(英语:Hückel method),又称休克尔分子轨道法(英语:Hückel molecular orbital method,缩写:HMO),是1930年埃里希·休克尔提出的一个计算分子轨道及能級的方式。

休克尔方法属于原子轨道线性组合(LCAO-MO)的能量计算方法,如:乙烯、苯、丁二烯的分子π轨道的能量的计算。该方法的结论是休克尔规则的基础。休克尔方法有一个扩展的理论,是为罗德·霍夫曼提出的扩展休克尔方法(英语:Extended Hückel method),是用来计算π轨道的三维能量状态,也被用来测试分子轨道对称守恒原理。它后来被扩展到含有杂原子的共轭分子,例如:吡啶、吡咯和呋喃。

此理论常做为教学上的例子在许多化学教科书中出现并详细介绍。

休克尔方法有几个性质:

休克尔法对一些简单分子的计算结果如下:

根据以上结果,丁二烯离域π键4个能级能量各不相同,基态时π电子占据能量最低的两个轨道;而环丁二烯的有两个能量相同的简并轨道,基态时各占据一个电子,成为单电子轨道。至于苯的6个能级中有两对是简并的。

链状和环状共轭系统,各能级能量有以下通式:

环状体系的能级排布可用Frost助记图(Frost circle mnemonic)表示。此图中,圆心的位置能量对应为α,圆的半径对应能量为2β,以最底端(能量α+2β)为一顶点做原内接正多边形,每个顶点所对应的能量即为该环状体系各个能级的能量。对于链状体系也有类似的助记图。

休克尔法的许多结论已被实验证实:

休克尔法是里茨法(英语:Ritz method)用于特定体系进一步简化的结果。对其中的哈密顿矩阵和重叠矩阵做了激进的近似:

假定为单位矩阵,意味着忽略轨道间的重叠积分,认为各p轨道是相互正交的,以便于将Ritz法的久期方程简化为普通的求特征值问题。

至于 = ()分情况做如下处理:

哈密顿矩阵的各特征值为每个分子轨道能级的能量,而对应的特征向量为原子轨道线性组合的系数。对于不含杂原子的体系,休克尔法没有任何引入任何参数,而有杂原子的体系(例如吡啶),参数AAB则需要用其它方法事先获知。

休克尔法对乙烯的处理,首先假定其π键的分子轨道 Ψ {\displaystyle \Psi \,} 是2p原子轨道 ϕ 1 , ϕ 2 {\displaystyle \phi _{1},\phi _{2}} 的线性组合:

代入薛定谔方程

其中 H {\displaystyle H\,} 是哈密顿算符, E {\displaystyle E\,} 是分子轨道对应的能量本征值,得

等式两边乘上 ϕ 1 {\displaystyle \phi _{1}\,} 并积分,得到

类似地,等式两边乘上 ϕ 2 {\displaystyle \phi _{2}\,} 并积分,得到

其中

得到的是相对于系数的线性方程组,写作矩阵形式:

进一步简化成矩阵的乘积:

如前所述,哈密顿矩阵的对角元素 H i i {\displaystyle H_{ii}\,} 称作库仑积分,而相邻原子轨道的交换积分 H i j {\displaystyle H_{ij}\,} 则称共振积分。休克尔法假定所有非零的共振积分都相等,且重叠积分是克罗内克函数, S i j = δ i j {\displaystyle S_{ij}=\delta _{ij}\,}

原方程用以上变量替换,得到齐次多项式

除以 β {\displaystyle \beta } ,化为

x {\displaystyle x} 表示 α E β {\displaystyle {\frac {\alpha -E}{\beta }}}

化成此形式是为了简化计算。各能量以及系数与x的关系:

线性方程组有非平凡解时,

行列式展开,解得 x = ± 1 {\displaystyle x=\pm 1\,}

于是各能级为

对应的,原子轨道系数满足

系数经归一化,得 c 1 = 1 2 , {\displaystyle c_{1}={\frac {1}{\sqrt {2}}},} ,因此解得分子轨道

β是负的,低能级轨道——即HOMO为 Ψ = 1 2 ( ϕ 1 + ϕ 2 ) {\displaystyle \Psi ={\frac {1}{\sqrt {2}}}(\phi _{1}+\phi _{2})\,} ,其能量为 α + β {\displaystyle \alpha +\beta } ;相应地,LUMO为 Ψ = 1 2 ( ϕ 1 ϕ 2 ) {\displaystyle \Psi ={\frac {1}{\sqrt {2}}}(\phi _{1}-\phi _{2})\,} ,其能量是 α β {\displaystyle \alpha -\beta }

休克尔法处理更复杂的分子,方法和乙烯是类似的。对于丁二烯,分子轨道是每个2p原子轨道的线性组合:

久期方程为

同样用 x {\displaystyle x} 表示 α E β {\displaystyle {\frac {\alpha -E}{\beta }}} ,得行列式

解得 x = ± 1.618 , ± 0.618 {\displaystyle x=\pm 1.618,\pm 0.618}

对于任意分子,以上久期行列式中对角元素为x,相邻的原子轨道对应的矩阵元素为1,其余为0。

相关

  • 担仔面担仔面(台湾话:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvetica,Arial,sans-serif} tànn
  • 黑糯米紫米是一种糯米,可用于制作紫米粥等甜点。 可与其他稻类杂交,因此与其他稻类无生殖隔离,属于稻类(oryza sativa L.)的亚种。黑米是一种籼米;但两者都是糙米。需要注意的地方是,紫米
  • 嗜粪癖嗜粪癖(英语:Coprophilia)是一种恋物癖形式,是指从粪便中获得性快感的一种性欲倒错。在由美国精神病协会出版的精神疾病诊断与统计手册(DSM)里,它被分类为 302.89 – 性欲倒错 NOS(
  • 海军军医大学中国人民解放军海军军医大学,简称海军军医大学,对外又称中国人民解放军第二军医大学,位于上海市杨浦区翔殷路800号,隶属中国人民解放军海军。1997年,第二军医大学成为国家“211工
  • 冲绳日语冲绳日语,即冲绳大和语,日本亦称作冲绳辩(日语:沖縄弁),是日本语在今冲绳县一带的方言。日本吞并琉球之后,明治政府推行标准语普及运动。为了更好地推动日语的普及,冲绳县的学校在使
  • 贝磊勾斯特在托尔金(J. R. R. Tolkien)的小说里,贝磊勾斯特(Belegost)是伊瑞德隆(Ered Luin)两个矮人聚居地的其中一个。贝磊勾斯特在辛达林语中解作“巨大的要塞”。矮人以矮人语(Khuzdul)称为
  • 现充现充一词是源自日语“リア充”(リアじゅう,リア意指リアル,即Real的音译)的网络语言,指现实生活中无需ACG和网络就能过得很充实的人,也可指某些二次元角色。特别是与“去死”二字
  • 恩里科·贝蒂恩里科·贝蒂(Enrico Betti,1823年10月21日-1892年8月11日),意大利数学家。意大利统一后对数学的复兴起重大作用的人之一。曾在比萨大学学习数学,曾参加意大利独立战争,1865年获比
  • 加州州立大学贝克斯菲尔德分校加州州立大学贝克斯菲尔德分校(California State University, Bakersfield,CSUB或CSU Bakersfield),或译贝克斯菲尔德加州大学是加利福尼亚州立大学系统内、位于美国加利福尼亚
  • 哈利·波特与密室《哈利·波特与密室》(英语:Harry Potter and the Chamber of Secrets)电影发行于2002年11月3日,该片剧本由史蒂夫·克劳夫编剧,根据J·K·罗琳的同名小说改编而成。该片由克里斯