休克尔方法

✍ dations ◷ 2025-07-30 00:33:42 #分子物理学,分子轨道理论

休克尔方法(英语:Hückel method),又称休克尔分子轨道法(英语:Hückel molecular orbital method,缩写:HMO),是1930年埃里希·休克尔提出的一个计算分子轨道及能級的方式。

休克尔方法属于原子轨道线性组合(LCAO-MO)的能量计算方法,如:乙烯、苯、丁二烯的分子π轨道的能量的计算。该方法的结论是休克尔规则的基础。休克尔方法有一个扩展的理论,是为罗德·霍夫曼提出的扩展休克尔方法(英语:Extended Hückel method),是用来计算π轨道的三维能量状态,也被用来测试分子轨道对称守恒原理。它后来被扩展到含有杂原子的共轭分子,例如:吡啶、吡咯和呋喃。

此理论常做为教学上的例子在许多化学教科书中出现并详细介绍。

休克尔方法有几个性质:

休克尔法对一些简单分子的计算结果如下:

根据以上结果,丁二烯离域π键4个能级能量各不相同,基态时π电子占据能量最低的两个轨道;而环丁二烯的有两个能量相同的简并轨道,基态时各占据一个电子,成为单电子轨道。至于苯的6个能级中有两对是简并的。

链状和环状共轭系统,各能级能量有以下通式:

环状体系的能级排布可用Frost助记图(Frost circle mnemonic)表示。此图中,圆心的位置能量对应为α,圆的半径对应能量为2β,以最底端(能量α+2β)为一顶点做原内接正多边形,每个顶点所对应的能量即为该环状体系各个能级的能量。对于链状体系也有类似的助记图。

休克尔法的许多结论已被实验证实:

休克尔法是里茨法(英语:Ritz method)用于特定体系进一步简化的结果。对其中的哈密顿矩阵和重叠矩阵做了激进的近似:

假定为单位矩阵,意味着忽略轨道间的重叠积分,认为各p轨道是相互正交的,以便于将Ritz法的久期方程简化为普通的求特征值问题。

至于 = ()分情况做如下处理:

哈密顿矩阵的各特征值为每个分子轨道能级的能量,而对应的特征向量为原子轨道线性组合的系数。对于不含杂原子的体系,休克尔法没有任何引入任何参数,而有杂原子的体系(例如吡啶),参数AAB则需要用其它方法事先获知。

休克尔法对乙烯的处理,首先假定其π键的分子轨道 Ψ {\displaystyle \Psi \,} 是2p原子轨道 ϕ 1 , ϕ 2 {\displaystyle \phi _{1},\phi _{2}} 的线性组合:

代入薛定谔方程

其中 H {\displaystyle H\,} 是哈密顿算符, E {\displaystyle E\,} 是分子轨道对应的能量本征值,得

等式两边乘上 ϕ 1 {\displaystyle \phi _{1}\,} 并积分,得到

类似地,等式两边乘上 ϕ 2 {\displaystyle \phi _{2}\,} 并积分,得到

其中

得到的是相对于系数的线性方程组,写作矩阵形式:

进一步简化成矩阵的乘积:

如前所述,哈密顿矩阵的对角元素 H i i {\displaystyle H_{ii}\,} 称作库仑积分,而相邻原子轨道的交换积分 H i j {\displaystyle H_{ij}\,} 则称共振积分。休克尔法假定所有非零的共振积分都相等,且重叠积分是克罗内克函数, S i j = δ i j {\displaystyle S_{ij}=\delta _{ij}\,}

原方程用以上变量替换,得到齐次多项式

除以 β {\displaystyle \beta } ,化为

x {\displaystyle x} 表示 α E β {\displaystyle {\frac {\alpha -E}{\beta }}}

化成此形式是为了简化计算。各能量以及系数与x的关系:

线性方程组有非平凡解时,

行列式展开,解得 x = ± 1 {\displaystyle x=\pm 1\,}

于是各能级为

对应的,原子轨道系数满足

系数经归一化,得 c 1 = 1 2 , {\displaystyle c_{1}={\frac {1}{\sqrt {2}}},} ,因此解得分子轨道

β是负的,低能级轨道——即HOMO为 Ψ = 1 2 ( ϕ 1 + ϕ 2 ) {\displaystyle \Psi ={\frac {1}{\sqrt {2}}}(\phi _{1}+\phi _{2})\,} ,其能量为 α + β {\displaystyle \alpha +\beta } ;相应地,LUMO为 Ψ = 1 2 ( ϕ 1 ϕ 2 ) {\displaystyle \Psi ={\frac {1}{\sqrt {2}}}(\phi _{1}-\phi _{2})\,} ,其能量是 α β {\displaystyle \alpha -\beta }

休克尔法处理更复杂的分子,方法和乙烯是类似的。对于丁二烯,分子轨道是每个2p原子轨道的线性组合:

久期方程为

同样用 x {\displaystyle x} 表示 α E β {\displaystyle {\frac {\alpha -E}{\beta }}} ,得行列式

解得 x = ± 1.618 , ± 0.618 {\displaystyle x=\pm 1.618,\pm 0.618}

对于任意分子,以上久期行列式中对角元素为x,相邻的原子轨道对应的矩阵元素为1,其余为0。

相关

  • 英属维尔京群岛英属维尔京群岛(英语:British Virgin Islands,缩写:BVI),或"英属维京群岛",又译“英属处女群岛”,是英国海外领土,位于加勒比海地区,处于波多黎各以东。英属维尔京群岛与邻近的美属维
  • 排遗排遗是生物体将食物经口进入如胃、小肠等消化器官消化吸收后,排除不能消化的剩余废物的过程,如排便等。排泄的关键词是代谢后的废物或其它产物的排出,指的是经过体内生化反应后
  • 扦插扦插又称插条、插枝,为植物所使用的其中一种繁殖方法,简单的说法是把一段植物插在某物质中使其生根、发芽,然后成长开花、结果,是取得与原植物特征一致的最有效方法,也有因植物的
  • 阿森斯雅典 (英语:Athens),又译阿森斯,正式名称为雅典-克拉克县(Athens–Clarke County),为佐治亚州东北部的合并市县。成立于1806年,市名来自古希腊学术中心雅典。原为雅典-克拉克县县治,19
  • 2005–062005-06 赛季是NBA第60个赛季。常规赛从2005年11月1日到2006年4月19日,30支球队分为东西两个联盟总共6个赛区进行82场比赛。常规赛结束后紧接着进行季后赛,季后赛从2006年4月2
  • 瑞典殖民者瑞典殖民地建立于1638至1663年,以及1785至1878年。严格来说,“帝国”一词并不能代表其殖民地的版图,因为瑞典没有足够能力同时统治其相对细小的殖民地。17世纪中叶,瑞典帝国(1611
  • 浅井万福丸浅井万福丸(1564年-1573年),浅井长政之子,据说正式的名称应为浅井辉政。其母一般认为是长政的正室阿市,但阿市嫁到浅井家的年份众说纷纭,一般多认为是1567年,也有1564年说。但如果是
  • 亚历山大·黑格小亚历山大·梅格斯·“艾尔”·黑格(英语:Alexander Meigs "Al" Haig Jr. ,1924年12月2日-2010年2月20日),出生于宾夕法尼亚州费城,是美国政治人物、外交官及美国陆军退役上将,曾任
  • 邓练贤邓练贤(1949年12月9日-2003年4月21日),SARS殉职医务人员,广东台山市人,前广州中山大学附属第三医院传染病科党支部书记、主任医师。在2003年SARS事件爆发期间感染SARS病毒,于2003年
  • 冷却剂流失事故冷却剂流失事故或称“失水事件”、“冷却水流失事故”,简称“LOCA”(读音近“喽卡”)来自英语Loss-Of-Coolant Accident。即核子反应堆的冷却剂因故流失,未能将热能带出反应堆