流体静力平衡

✍ dations ◷ 2025-11-14 17:49:52 #流体力学,天体物理学,水静力学,行星定义

流体静力平衡 (法文: Équilibre hydrostatique; 德文: Hydrostatisches Gleichgewicht; 英文:Hydrostatic equilibrium)也称为静力学平衡、静水压平衡,是指当流体处于相对静止,或匀速运动时的平衡状态。比如地球大气在重力和由压力梯度形成的与前者方向相反压强梯度力之间的平衡,使其不致被重力压扁,也不致被压强梯度力扩散到太空中。

对于相对静止或匀速运动的流体, 牛顿运动定律表明该物体所受合力为零 – 向上的力和向下的力相等. 这种平衡被称为流体静力平衡。

我们可以将该气体分解为若干微长方体体积元素。当只考虑其中一个元素时, 我们可以解决当所有为长方体是一个整体的境况。

有三种力:由流体上压力P产生的作用在微立方体的顶部之上的向下的力, 根据压力的定义,

相似的, 作用在体积元素上从流体压力下向上推的了力是

在这个等式中, 减号来自于方向 – 这个力支持了体积元素, 而不是将它们拉下去 (我们认定正方向的力作用向下, 如果你将"下"当成"上"对于静流体压力结果一样).

最后, 体积元素的重量导致了一种向下的力。 如果用 ρ表示密度, 体积是V, 然后g是标准重力, 那么:

微立方体的体积等于顶部或底部的面积乘以高度 - 计算立方体的等式

平衡这些力, 作用在气体上的合力为

如果气体不动,它将是零。 如果我们除以A,

或者,

Ptop − Pbottom 在压力中变化, h是体积元素的高度 – 地面上距离的改变。考虑这些改变是无穷微小的, 等式可以用导数的形式表达。

密度随压力的改变而改变, 重力根据高度的改变而改变, 所以等式会成为:

注意最后的这个等式在流体静力平衡的境况下,可以根据三维的纳维-斯托克斯方程式解决。

唯一的平凡等式是 z {\displaystyle z} -equation,现在读作

这样流体静力平衡可以被认为是纳维-斯托克斯方程式的一个特殊情况。

流体静力平衡和流体静力学与流体平衡原理密接相关。流体静力平衡是对于计量水中物质的特别平衡,流体静力平衡可以用来发现它们之间的比重。

流体静力平衡是支持大气不坍塌的重要平衡。

流体静力平衡是恒星不会向内坍缩(内爆)或爆炸的原因。在天文物理,在恒星内部给定的任何一层,都是在热压力(向外)和在其外物质的质量产生的压力(向内)平衡的状态,这种平衡称为流体静力平衡。恒星就像一颗气球,在气球中,气球内部的气体向外挤压,大气压力和弹性材料提供足够的向内的抵抗压力,使气球的内外压力平衡。在恒星的情况下,恒星内部的质量提供向内的压力,各向同性的重力场压缩恒星使它成为最紧凑的形状:球形。

在理论上,一个恒星在只受重力(以及其他各向同性力)的影响下,其形状是一个理想球体。然而在实际的情况下,所有其它的力都是各向异性向外的,最常被注意到的就是由恒星自转产生的离心力。一颗自转的恒星会依据其角速度成为在流体静力平衡下的椭球体;在此点上,它将成为雅可比(不规则)椭圆,更高的旋转速度就会形成梨形 。一个极端的例子是织女星,它的自转周期是12.5小时,因此它的赤道比两极胖了约20%。

如果一颗恒星的附近有大质量的伴星,就会产生潮汐力的作用,使它的球形在朝向伴星的方向上扭曲成为扁球体,渐台二(天琴座β)就是一个例子。

在星系团介质中它也是重要的,它限制了存在星系团核心部分的气体总量。

此外,有足够的质量,能以自身的重力克服刚体力,以呈现流体静力平衡的形状也是行星或矮行星的定义要素之一。

Strobel, Nick. (May, 2001). Nick Strobel's Astronomy Notes.

相关

  • 检疫隔离检疫 是风险管理的一种设施。 当人类、动物、植物等,由一个地方进入另一个地方,为防带有传染病等,所以必须进行隔离检疫。本条目出自公有领域:Chisholm, Hugh (编). Quarant
  • 治疗治疗(英语:Therapy),指用于解决健康问题的手段,通常在医学诊断后实施。
  • 下标下标,也叫下角标、脚标,是出现在一列正常字体下边的数字、字母或其他标志,特别是用于公式、数学表达式或化学复合物的描述,例如水的分子式“H2O”中的数字“2”。在印刷上,下标设
  • 望闻问切中医诊断学是根据中医学理论,研究诊查病情、判断病种、辨别证候的基础理论、基本知识和基本技能的一门学科。中医诊断学主要包括诊法学和辨证学两部,两者相互渗透,相互联系。中
  • 230110 数学 120 信息科学与系统科学 130 力学 140 物理学 150 化学 160 天文学 170 地球科学 180 生物学210 农学 220 林学 230 畜牧、兽医科学 240 水产学310 
  • 国际人权日世界人权日提醒我们,现时在我们的社区及全世界,还有持续的人权问题。要让人权在全世界得以落实推行,还有赖我们各人的努力。1950年起,联合国大会定每年的12月10日为国际人权日,以
  • 北美大平原大平原(英语:Great Plains),多称北美大平原、北美大草原,是北美洲中部一块广袤的平原地区,大致位于密西西比河以西、落基山脉以东、格兰德河以北。自然植被以草为主。大平原东西长
  • 布莱克希女子组合布莱克希女子组合(Blaxy Girls)是一个来自罗马尼亚康斯坦察地区的女子摇滚乐团。乐队由主唱Rucsandra Iliescu、贝斯手Cristina Marinescu、吉他手Diana Ganea、钢琴演奏者Ana
  • 钱象坤钱象坤(1569年-1640年),字弘载,号麟武,浙江会稽(今绍兴)人,晚明政治人物,同进士出身。万历二十九年(1601年)登辛丑科进士。天启年间,任礼部右侍郎兼太子宾客,后又为南京礼部尚书,后因被魏忠
  • 傅满洲傅满州、福满州博士, 亦称 傅满族 、福满族 、傅满人或 福满人 (英文:Dr.Fu Manchu),是英国推理小说作家萨克斯·罗默(Sax Rohmer)创作的傅满州系列小说中的虚构人物。1913年在《