顶点 (曲线)

✍ dations ◷ 2025-04-26 14:01:40 #曲线

在描述曲线时,顶点是指该曲线上曲率相对于附近其他点的极值,更正式地,在几何学中会将曲线中曲率的一阶导数为零的点称为曲线上的顶点:570:126,而这个点通常会是曲线中的区域极值,如局部最大值或局部最小值:127,部分的文献会将曲线的顶点更具体地定义为曲线的局部曲率极点。:141然而也有可能存在一些特殊情况,例如二阶导数为零或者曲率为常数等状况。

除了圆形,其他的圆锥曲线皆可以定义出顶点。

双曲线是指两个固定的点(称为焦点)的距离差是常数的点的轨迹。这个轨迹会形成2个不相交的部分,称为双曲线的分支。一般而言,双曲线会有两个顶点,这两个顶点分别位于双曲线的2个分支中,两者彼此最接近的点:310。

抛物线仅有一个顶点,位于其与对称轴的交点上,其可以透过将曲线对应的二次式做微分找到::127

同时,抛物线也对应到物体抛射与落下的轨迹,此时抛物线的顶点也代表物体飞行的最高点。

椭圆有4个顶点,分别位于其与2个对称轴的交点上:570:127。而圆形每一个点的曲率值都相同,在初等教育中一般会说圆形没有顶点,亦可以视为圆上的每一点都是顶点

若一链条(或绳索,电缆,绳索,绳子等)悬挂并自然下垂,且施加的任何拉力与链条平行,则此链条所形成的曲线称为悬链线。悬链线的最低点称为悬链线的顶点。

曲线中的顶点通常会使得位于曲线该点的密接圆与曲线形成4个触点:126:142,而曲线中不是顶点的点一般而言位于曲线该点的密接圆只会与曲线形成3个触点。当曲线有顶点时,曲线的渐屈线上通常会存在尖点:142。此外,进一步退化的非稳定奇点可能会发生于高阶的顶点上。在该顶点上,密接圆与曲线形成的触点会比四阶更高。:126

根据四顶点定理,每个简单的闭合平面光滑曲线必须至少具有四个顶点。更一般地,位于凸体空间或区域闭圆盘的简单封闭空间曲线都应至少存在4个顶点。

顶点可以代表曲线的极端值,类似地这个定义在文化中的一般常见用法(如:达到顶点)则可以代表某范围或某领域的最高点。这种定义与一般几何学的顶点不同,一般几何学中,多面体的顶点是指多个几何物件交于一点所形成的点,然而在描述“相对高点”时,顶点的定义就变成相对于底的点,如探讨高线时。

相关

  • 埃伦伯格克里斯汀·戈特弗里德·埃伦伯格(德语:Christian Gottfried Ehrenberg,1795年4月19日-1876年6月27日),生于德国德利慈(Delitzsch),著名博物学家、动物学家、比较解剖学家、地理学家、
  • 嗜伊红性脑膜炎脑膜炎(英语:meningitis)指发生于脑膜的急性炎症,脑膜是包裹大脑和脊髓的保护薄膜。脑膜炎最常见的症状是发热、头痛和颈部僵硬。其他症状还包含精神错乱(英语:mental confusion)或
  • 钍燃料发电钍元素能否取代铀、钚(钚)等核燃料作发电用途值得关注。叶恭平博士支持钍燃料发电因为钍的蕴藏量较多、燃料装造较简易、产生较少核废料、不易制成武器,而且钍裂变发电较有效率
  • 奥斯河坐标:44°07′15″N 00°16′49″E / 44.12083°N 0.28028°E / 44.12083; 0.28028奥斯河是法国的河流,位于该国西南部,属于热利斯河的右支流,河道全长120公里,发源自贝尔纳代特
  • 雅弗理论雅弗理论(俄语:яфетическая теория)是一个由苏联语言学家尼古拉·马尔提出的理论,理论声称高加索地区的南高加索语系与中东地区的闪米特语族相关。该理论由于
  • 传染感染是指由病原体物种在身为宿主的个体内进行有害的复制、繁殖过程。具传染性的生物体会寻找并且利用宿主体内资源,以利自身生存,但这个过程一旦干扰了宿主正常的生理运作,可能
  • 咸菜腌菜,又名咸菜,是主要用食盐腌制保存并调味的蔬菜,可以用来直接佐餐,或者作为烹调的原料(比如雪里蕻炒肉丝,担担面里的榨菜等)。在沿海卤水较多地区相当普遍,作为凉菜的主料或佐料。
  • 纳粹集中营纳粹集中营转移营比利时:布伦东克堡垒 · 梅赫伦转移营法国:居尔集中营 · 德朗西集中营意大利:波尔查诺转移营荷兰:阿默斯福特集中营 · 韦斯特博克转移营挪威:法斯塔德集中营部
  • 头孢曲松钠头孢曲松(Ceftriaxone),商品名为罗氏芬(Rocephin),是一种可用于治疗如革兰氏阳性菌及革兰氏阴性菌等多种细菌感染的抗生素,包括中耳炎、心内膜炎、脑膜炎、肺炎、骨关节炎、腹腔内
  • 奴奴干岛奴奴干岛是印度尼西亚的岛屿,位于加里曼丹岛以东,由东加里曼丹省负责管辖,面积226平方公里,人口109,773,人口密度每平方公里485人。