比赞数(Be)是得名自杜克大学教授阿德里安·比赞(英语:Adrian Bejan)的无量纲,有二种比赞数,分别用在热力学及流体力学中。
热力学中的比赞数是热传不可逆性和总不可逆性(因为热传及流体摩擦力)之间的比例:
其中
流体力学的比赞数是沿着长度管道的无因次压力差:
其中
热传学的比赞数是沿着长度管道的无因次压力差:
其中
比赞数在强制对流中的角色和瑞利数在自然对流中的角色相近。
质传的比赞数是沿着长度的管道无因次压力差:
其中
若在雷诺类比(英语:Reynolds analogy)的条件下(Le = Pr = Sc = 1),以上三种Bejan数都相同。
阿瓦德(Awad)和拉赫(Lage)提出了另一个修改版的比赞数,最早是从巴塔查尔吉(Bhattacharjee)和格罗赫德勒(Grosshandler)针对动量过程的研究所产生的,这种比赞数中不使用粘度,而用流体密度和动量扩散率的乘积来代替。此作法一方面更接近物理特性,而且此无因次量可以不受粘度影响。这种简化也可以将比赞数延伸到其他的扩散过程中,例如热传,只要更换扩散系数即可。因此也可以产生通用的比赞数,描述压力差和扩散之间的关系。已证明此通用形式对于符合雷诺类比(英语:Reynolds analogy)(Le = Pr = Sc = 1)的过程,会有类似的结果,也就是表示动量、能量及特定物质质量的比赞数会是相同的值。
因此,比赞数更中性的定义如下:
其中
此外,阿瓦德比较哈根数(英语:Hagen number)及流体力学的比赞数,两者的物理意义是不同的,哈根数是无因次的压力梯度,而比赞数是无因次的压力差。不过若哈根数的特征长度(l)等于比赞数的流体长度(L), 因此在哈根-泊肃叶流中的比赞数可以用下式来定义
其中
此处的比赞数也是无因次量。