在应用数学中,加权余量法(MWR)是求解微分方程的方法。假设这些微分方程的解通过近似函数的有限和很好地近似。在这种情况下,所选择的加权余量法用于找到每个相应测试函数的系数值。产生的系数用于在所选择的范数中使测试函数的线性组合与实际解之间的误差最小。
本段对加权余量法中使用的符号进行简要介绍。
在应用数学中,加权余量法(MWR)是求解微分方程的方法。假设这些微分方程的解通过近似函数的有限和很好地近似。在这种情况下,所选择的加权余量法用于找到每个相应测试函数的系数值。产生的系数用于在所选择的范数中使测试函数的线性组合与实际解之间的误差最小。
本段对加权余量法中使用的符号进行简要介绍。