首页 >
解析数论
✍ dations ◷ 2025-11-08 22:08:37 #解析数论
解析数论(analytic number theory),为数论中的分支,它使用由数学分析中发展出的方法,作为工具,来解决数论中的问题。它首次出现在数学家狄利克雷在1837年导入狄利克雷L函数,来证明狄利克雷定理。解析数论的成果中,较广为人知的是在质数(例如质数定理及黎曼ζ函数)及堆叠数论(例如哥德巴赫猜想及华林问题)。解析数论主要分为两种,区分方式主要是因为待求解问题种类的不同,而比较不是因为使用技巧上的基本差异。微积分和复变函数论发展以后,产生了解析数论。该学科的第一个主要成就是狄利克雷用解析方法证明了狄利克雷定理。依靠黎曼ζ函数对素数定理的证明是另一个里程碑。
解析数论是解决数论中艰深问题的重要工具,数论中有些问题必须由解析方法才能提出或解决。
中国的华罗庚开启了中国解析数论学派,王元、陈景润、潘承洞等人在“哥德巴赫猜想”上也有相当进展,陆续证明了“3+4”、“2+3”及“1+2”,其中的“1+2”就是陈氏定理。解析数论的定理及成果比较不是有关整数精确结构的的结果,这方面用代数或是几何上的工具比较合适。解析数论的许多定理多半会预估一些数论相关函数的范围及预计。欧几里得证明了质数有无限多个,可是很难找到可以快速判定一个整数是否是质数的方法(特别是整数很大时)。另外一个也有关系,但比较简单的问题是找到质数的渐近分布,也就是可以大略描述有多少质数小于特定整数。卡尔·高斯在计算大量的质数后提出其猜想,他认为小于或等于一个很大整数N的质数个数,接近以下的定积分波恩哈德·黎曼在1859年利用复变分析以及一个特殊的亚纯函数(后来称为黎曼ζ函数)来推导小于等于特定实数x之质数个数的解析解。值得一提的是,黎曼公式的主要项就是上述的积分,因此让高斯的猜想更加重要。黎曼找到了解析解中的误差项和黎曼ζ函数的复数零点有密切的关系,因此质数分布的形式也和黎曼ζ函数的复数零点有关。雅克·阿达马及查尔斯·让·德·拉谷地普桑(英语:Charles Jean de la Vallée-Poussin)利用黎曼的概念,以及对ζ函数零点的资讯,致力证明高斯的猜想,而且他们证明了若则上述的结果目前称为质数定理,是解析数论的核心结果。简单的说,质数定理提到给定一个大数字N,小于等于N的质数个数大约有N/log(N)个。华林问题是堆叠数论中最重要的问题之一,问题是针对任意大于等于2的整数k,是否可以将任意正整数表示为有限个整数的k次方的和针对平方的例子k = 2,已由拉格朗日在1770年由四平方和定理证明。针对任意整数的例子由大卫·希尔伯特在1909年证明,不过运用的是代数的技巧,没有提出数字个数的上界。戈弗雷·哈罗德·哈代及约翰·恩瑟·李特尔伍德应用解析数论的工具处理此一问题,带来突破性的进展,他们用的工具称为圆法(circle method),可以针对函数G(k)(整数用k次方和表示时,需要的最小整数)提出具体的上界,例如维诺格拉多夫上界为丢番图方程和多项式方程的整解有关。有些研究可能是探讨解的分析情形,也就是依照某种“高度函数”来计算这些解。高斯圆问题(英语:Gauss circle problem)是丢番图方程中的一个重要例子,要求满足下式的整数点(x y)用几何的方式来说,给定在平面上,以原点为圆心,半径是
r
{displaystyle r}
的圆,此问题要问的是在此圆内和圆上有多少个格子点。其解为
π
r
2
+
E
(
r
)
{displaystyle ,pi r^{2}+E(r),}
,其中
E
(
r
)
/
r
2
→
0
{displaystyle ,E(r)/r^{2},to 0,}
在
r
→
∞
{displaystyle ,rto infty ,}
时。不过最难(也是解析数论取得大幅进展)的部分是在确认此误差项
E
(
r
)
{displaystyle E(r)}
的上界。高斯证明了误差项的渐近行为
E
(
r
)
=
O
(
r
)
{displaystyle E(r)=O(r)}
,O(r)为大O符号,表示误差项不会超过
r
{displaystyle r}
的线性项。而后来瓦茨瓦夫·谢尔宾斯基在1906年证明了
E
(
r
)
=
O
(
r
2
/
3
)
{displaystyle E(r)=O(r^{2/3})}
。哈代和爱德蒙·兰道都证明了
E
(
r
)
=
O
(
r
1
/
2
)
{displaystyle E(r)=O(r^{1/2})}
不成立(
E
(
r
)
{displaystyle E(r)}
数量级超过
r
{displaystyle r}
开根号)。因此以后目标是证明针对每一个
ϵ
>
0
{displaystyle epsilon >0}
,都存在实数
C
(
ϵ
)
{displaystyle C(epsilon )}
使得
E
(
r
)
≤
C
(
ϵ
)
r
1
/
2
+
ϵ
{displaystyle E(r)leq C(epsilon )r^{1/2+epsilon }}
。2000年马丁·赫胥黎(英语:Martin Huxley)证明了
E
(
r
)
=
O
(
r
131
/
208
)
{displaystyle E(r)=O(r^{131/208})}
,是目前最好的结果。On specialized aspects the following books have become especially well-known:Certain topics have not yet reached book form in any depth. Some examples are
(i) Montgomery's pair correlation conjecture and the work that initiated from it,
(ii) the new results of Goldston, Pintz and Yilidrim on small gaps between primes, and
(iii) the Green–Tao theorem showing that arbitrarily long arithmetic progressions of primes exist.
相关
- 纳武利尤单抗纳武利尤单抗(Nivolumab,商品名Opdivo,中文商品名欧狄沃)是一种用于治疗癌症的完全人源化抗PD-1单克隆抗体。该药主要作为一线药物与伊匹单抗(Ipilimumab)联合治疗不可切除或转移
- 氯丙二醇氯丙醇(Chloropropanols)是一类在化学制作豉油的过程中所产生的致癌物质。日常比较常见的氯丙醇包括以下三种:传统豉油酿造法是以微生物来分解黄豆蛋白,酿造过程约需半年。(参看
- 视觉系统视觉系统是神经系统的一个组成部分,它使生物体具有了视知觉能力。它使用可见光信息构筑机体对周围世界的感知。视觉系统具有将外部世界的二维投射重构为三维世界的能力。需要
- 铋4f14 5d10 6s2 6p32, 8, 18, 32, 18, 5蒸气压第一:703 kJ·mol−1 第二:1610 kJ·mol−1 第三:2466 kJ·mol−1 (主条目:铋的同位素铋(Bismuth)是一种元素,化学符号是Bi,原子序是83
- 猩猩猩猩是一群与人类在演化关系上最为密切的动物的统称。这个词汇包括除人属外的全部现存人科(又叫猩猩科)动物,如下:
- 四氧化三铁氧化亚铁铁 (ferrous ferric oxide) ferroso ferric oxide 氧化铁(II,III) 磁铁矿 (magnetite) 氧化黑铁 (black iron oxide) lodestone 铁锈 (rust) 氧化铁(II)二铁(III)
- 阿布哈兹面积以下资讯是以2012年估计国家领袖国内生产总值(国际汇率)立国历史阿布哈兹共和国(阿布哈兹语:Аҧсны;格鲁吉亚语:აფხაზეთი;俄语:Абхазия) 通称阿布哈兹 ,又译作
- 朝代中国朝代是指某一世系帝王之统治时期,亦是以政权界定一个历史时期之名词,此等中原王朝之政权更替,构成了中国朝代轮替。“朝”指以正统自居之当政政权,“朝代”指“朝”政权执政
- 养猪业猪生产学是动物科学的一个重要分支,主要研究养猪生产中的各种理论和技术。根据食用习惯和市场需求的不同,一般可分为脂肪型、瘦肉型和肉脂兼用型。猪只的各部分也可以加工,作为
- 智能电视智能电视机(Smart TV,智能电视),又称互联网电视,是在传统电视的基础上集成了最新一代互联网技术的电视机。智能电视可以运行完整的操作系统,并含一个软件平台,可以供应用软件开发者
