解析数论

✍ dations ◷ 2025-11-16 05:11:38 #解析数论
解析数论(analytic number theory),为数论中的分支,它使用由数学分析中发展出的方法,作为工具,来解决数论中的问题。它首次出现在数学家狄利克雷在1837年导入狄利克雷L函数,来证明狄利克雷定理。解析数论的成果中,较广为人知的是在质数(例如质数定理及黎曼ζ函数)及堆叠数论(例如哥德巴赫猜想及华林问题)。解析数论主要分为两种,区分方式主要是因为待求解问题种类的不同,而比较不是因为使用技巧上的基本差异。微积分和复变函数论发展以后,产生了解析数论。该学科的第一个主要成就是狄利克雷用解析方法证明了狄利克雷定理。依靠黎曼ζ函数对素数定理的证明是另一个里程碑。 解析数论是解决数论中艰深问题的重要工具,数论中有些问题必须由解析方法才能提出或解决。 中国的华罗庚开启了中国解析数论学派,王元、陈景润、潘承洞等人在“哥德巴赫猜想”上也有相当进展,陆续证明了“3+4”、“2+3”及“1+2”,其中的“1+2”就是陈氏定理。解析数论的定理及成果比较不是有关整数精确结构的的结果,这方面用代数或是几何上的工具比较合适。解析数论的许多定理多半会预估一些数论相关函数的范围及预计。欧几里得证明了质数有无限多个,可是很难找到可以快速判定一个整数是否是质数的方法(特别是整数很大时)。另外一个也有关系,但比较简单的问题是找到质数的渐近分布,也就是可以大略描述有多少质数小于特定整数。卡尔·高斯在计算大量的质数后提出其猜想,他认为小于或等于一个很大整数N的质数个数,接近以下的定积分波恩哈德·黎曼在1859年利用复变分析以及一个特殊的亚纯函数(后来称为黎曼ζ函数)来推导小于等于特定实数x之质数个数的解析解。值得一提的是,黎曼公式的主要项就是上述的积分,因此让高斯的猜想更加重要。黎曼找到了解析解中的误差项和黎曼ζ函数的复数零点有密切的关系,因此质数分布的形式也和黎曼ζ函数的复数零点有关。雅克·阿达马及查尔斯·让·德·拉谷地普桑(英语:Charles Jean de la Vallée-Poussin)利用黎曼的概念,以及对ζ函数零点的资讯,致力证明高斯的猜想,而且他们证明了若则上述的结果目前称为质数定理,是解析数论的核心结果。简单的说,质数定理提到给定一个大数字N,小于等于N的质数个数大约有N/log(N)个。华林问题是堆叠数论中最重要的问题之一,问题是针对任意大于等于2的整数k,是否可以将任意正整数表示为有限个整数的k次方的和针对平方的例子k = 2,已由拉格朗日在1770年由四平方和定理证明。针对任意整数的例子由大卫·希尔伯特在1909年证明,不过运用的是代数的技巧,没有提出数字个数的上界。戈弗雷·哈罗德·哈代及约翰·恩瑟·李特尔伍德应用解析数论的工具处理此一问题,带来突破性的进展,他们用的工具称为圆法(circle method),可以针对函数G(k)(整数用k次方和表示时,需要的最小整数)提出具体的上界,例如维诺格拉多夫上界为丢番图方程和多项式方程的整解有关。有些研究可能是探讨解的分析情形,也就是依照某种“高度函数”来计算这些解。高斯圆问题(英语:Gauss circle problem)是丢番图方程中的一个重要例子,要求满足下式的整数点(x y)用几何的方式来说,给定在平面上,以原点为圆心,半径是 r {displaystyle r} 的圆,此问题要问的是在此圆内和圆上有多少个格子点。其解为 π r 2 + E ( r ) {displaystyle ,pi r^{2}+E(r),} ,其中 E ( r ) / r 2 → 0 {displaystyle ,E(r)/r^{2},to 0,} 在 r → ∞ {displaystyle ,rto infty ,} 时。不过最难(也是解析数论取得大幅进展)的部分是在确认此误差项 E ( r ) {displaystyle E(r)} 的上界。高斯证明了误差项的渐近行为 E ( r ) = O ( r ) {displaystyle E(r)=O(r)} ,O(r)为大O符号,表示误差项不会超过 r {displaystyle r} 的线性项。而后来瓦茨瓦夫·谢尔宾斯基在1906年证明了 E ( r ) = O ( r 2 / 3 ) {displaystyle E(r)=O(r^{2/3})} 。哈代和爱德蒙·兰道都证明了 E ( r ) = O ( r 1 / 2 ) {displaystyle E(r)=O(r^{1/2})} 不成立( E ( r ) {displaystyle E(r)} 数量级超过 r {displaystyle r} 开根号)。因此以后目标是证明针对每一个 ϵ > 0 {displaystyle epsilon >0} ,都存在实数 C ( ϵ ) {displaystyle C(epsilon )} 使得 E ( r ) ≤ C ( ϵ ) r 1 / 2 + ϵ {displaystyle E(r)leq C(epsilon )r^{1/2+epsilon }} 。2000年马丁·赫胥黎(英语:Martin Huxley)证明了 E ( r ) = O ( r 131 / 208 ) {displaystyle E(r)=O(r^{131/208})} ,是目前最好的结果。On specialized aspects the following books have become especially well-known:Certain topics have not yet reached book form in any depth. Some examples are (i) Montgomery's pair correlation conjecture and the work that initiated from it, (ii) the new results of Goldston, Pintz and Yilidrim on small gaps between primes, and (iii) the Green–Tao theorem showing that arbitrarily long arithmetic progressions of primes exist.

相关

  • 纳博特囊肿纳博特囊肿(nabothian cyst, nabothian follicle),也称纳囊、宫颈腺囊肿、宫颈腺体囊肿、子宫颈囊肿,是一类位于宫颈表面的囊肿。当外宫颈复层鳞状上皮生长覆盖过单层柱状上皮上
  • 拉丁非洲拉丁非洲(法语:Afrique latine,葡萄牙语:África Latina)或罗曼语非洲指的是官方语言或主要语言属于罗曼语族,受拉丁文化(法语:Culture latine)影响的非洲国家和地区,这些国家或地区有
  • 舌(舌头)是口腔底的肌肉,帮助咀嚼、吞咽、构音和感受味觉。舌能辨别酸、甜、苦、辣、咸、鲜味,舌表面的大部分粘膜上皮中含味蕾。因为舌是帮助发声的器官之一,在一些语言中,比如在
  • 海洋学海洋学(英语:oceanography)是研究海洋的自然现象、性质及其变化规律,以及开发利用海洋的知识体系。它是研究海洋的地理学的分支。它涵盖了广泛的主题,包括生态系统动力学、洋流、
  • 酯质脂类(英语:Lipid),又称脂质,这是一类不溶于水而易溶于脂肪溶剂(醇、醚、氯仿、苯)等非极性有机溶剂,由脂肪酸与醇作用脱水缩合生成的酯及其衍生物统称为脂类,其中包括脂肪、蜡、类固
  • 多潘立酮多潘立酮(Domperidone),商品名为吗丁啉(Motilium),是一种口服和静脉注射用的抗多巴胺类药物,一般用以抑制恶心和呕吐,有时也用于促进乳汁分泌。多潘立酮的抗催吐作用主要是由于其对
  • 生机论生命力论(英语:Vitalism,又译为生命主义、生气论、生机论、生机说、生命力)在人类历史上存在长久的历史,现代版本是19世纪初由瑞典化学家贝采利乌斯提出。一般认为“生命力”学说
  • 野芝麻属野芝麻属(学名:Lamium)是唇形科下的一个属,为一年生或多年生草本植物。该属共有约40种,产自欧洲、北非及亚洲。
  • 波士顿红袜波士顿红袜(Boston Red Sox),是一支位于波士顿的职业棒球队,隶属于美国职棒大联盟的美国联盟东区。球队主场为拥有悠久历史的芬威球场。红袜队是全联盟客场平均观众人数最多的球
  • 1-二十烷醇Arachidic alcohol Nonadecylcarbinol1-二十烷醇又名花生醇(Arachidyl alcohol),是一种白色蜡状固体,在化妆品中用作润肤剂。