首页 >
解析数论
✍ dations ◷ 2025-11-20 14:57:06 #解析数论
解析数论(analytic number theory),为数论中的分支,它使用由数学分析中发展出的方法,作为工具,来解决数论中的问题。它首次出现在数学家狄利克雷在1837年导入狄利克雷L函数,来证明狄利克雷定理。解析数论的成果中,较广为人知的是在质数(例如质数定理及黎曼ζ函数)及堆叠数论(例如哥德巴赫猜想及华林问题)。解析数论主要分为两种,区分方式主要是因为待求解问题种类的不同,而比较不是因为使用技巧上的基本差异。微积分和复变函数论发展以后,产生了解析数论。该学科的第一个主要成就是狄利克雷用解析方法证明了狄利克雷定理。依靠黎曼ζ函数对素数定理的证明是另一个里程碑。
解析数论是解决数论中艰深问题的重要工具,数论中有些问题必须由解析方法才能提出或解决。
中国的华罗庚开启了中国解析数论学派,王元、陈景润、潘承洞等人在“哥德巴赫猜想”上也有相当进展,陆续证明了“3+4”、“2+3”及“1+2”,其中的“1+2”就是陈氏定理。解析数论的定理及成果比较不是有关整数精确结构的的结果,这方面用代数或是几何上的工具比较合适。解析数论的许多定理多半会预估一些数论相关函数的范围及预计。欧几里得证明了质数有无限多个,可是很难找到可以快速判定一个整数是否是质数的方法(特别是整数很大时)。另外一个也有关系,但比较简单的问题是找到质数的渐近分布,也就是可以大略描述有多少质数小于特定整数。卡尔·高斯在计算大量的质数后提出其猜想,他认为小于或等于一个很大整数N的质数个数,接近以下的定积分波恩哈德·黎曼在1859年利用复变分析以及一个特殊的亚纯函数(后来称为黎曼ζ函数)来推导小于等于特定实数x之质数个数的解析解。值得一提的是,黎曼公式的主要项就是上述的积分,因此让高斯的猜想更加重要。黎曼找到了解析解中的误差项和黎曼ζ函数的复数零点有密切的关系,因此质数分布的形式也和黎曼ζ函数的复数零点有关。雅克·阿达马及查尔斯·让·德·拉谷地普桑(英语:Charles Jean de la Vallée-Poussin)利用黎曼的概念,以及对ζ函数零点的资讯,致力证明高斯的猜想,而且他们证明了若则上述的结果目前称为质数定理,是解析数论的核心结果。简单的说,质数定理提到给定一个大数字N,小于等于N的质数个数大约有N/log(N)个。华林问题是堆叠数论中最重要的问题之一,问题是针对任意大于等于2的整数k,是否可以将任意正整数表示为有限个整数的k次方的和针对平方的例子k = 2,已由拉格朗日在1770年由四平方和定理证明。针对任意整数的例子由大卫·希尔伯特在1909年证明,不过运用的是代数的技巧,没有提出数字个数的上界。戈弗雷·哈罗德·哈代及约翰·恩瑟·李特尔伍德应用解析数论的工具处理此一问题,带来突破性的进展,他们用的工具称为圆法(circle method),可以针对函数G(k)(整数用k次方和表示时,需要的最小整数)提出具体的上界,例如维诺格拉多夫上界为丢番图方程和多项式方程的整解有关。有些研究可能是探讨解的分析情形,也就是依照某种“高度函数”来计算这些解。高斯圆问题(英语:Gauss circle problem)是丢番图方程中的一个重要例子,要求满足下式的整数点(x y)用几何的方式来说,给定在平面上,以原点为圆心,半径是
r
{displaystyle r}
的圆,此问题要问的是在此圆内和圆上有多少个格子点。其解为
π
r
2
+
E
(
r
)
{displaystyle ,pi r^{2}+E(r),}
,其中
E
(
r
)
/
r
2
→
0
{displaystyle ,E(r)/r^{2},to 0,}
在
r
→
∞
{displaystyle ,rto infty ,}
时。不过最难(也是解析数论取得大幅进展)的部分是在确认此误差项
E
(
r
)
{displaystyle E(r)}
的上界。高斯证明了误差项的渐近行为
E
(
r
)
=
O
(
r
)
{displaystyle E(r)=O(r)}
,O(r)为大O符号,表示误差项不会超过
r
{displaystyle r}
的线性项。而后来瓦茨瓦夫·谢尔宾斯基在1906年证明了
E
(
r
)
=
O
(
r
2
/
3
)
{displaystyle E(r)=O(r^{2/3})}
。哈代和爱德蒙·兰道都证明了
E
(
r
)
=
O
(
r
1
/
2
)
{displaystyle E(r)=O(r^{1/2})}
不成立(
E
(
r
)
{displaystyle E(r)}
数量级超过
r
{displaystyle r}
开根号)。因此以后目标是证明针对每一个
ϵ
>
0
{displaystyle epsilon >0}
,都存在实数
C
(
ϵ
)
{displaystyle C(epsilon )}
使得
E
(
r
)
≤
C
(
ϵ
)
r
1
/
2
+
ϵ
{displaystyle E(r)leq C(epsilon )r^{1/2+epsilon }}
。2000年马丁·赫胥黎(英语:Martin Huxley)证明了
E
(
r
)
=
O
(
r
131
/
208
)
{displaystyle E(r)=O(r^{131/208})}
,是目前最好的结果。On specialized aspects the following books have become especially well-known:Certain topics have not yet reached book form in any depth. Some examples are
(i) Montgomery's pair correlation conjecture and the work that initiated from it,
(ii) the new results of Goldston, Pintz and Yilidrim on small gaps between primes, and
(iii) the Green–Tao theorem showing that arbitrarily long arithmetic progressions of primes exist.
相关
- 发育生物学发育生物学(英语:Developmental biology)是对于生物体生长和发育过程的研究。发育生物学研究基因对细胞生长,分化和形态发生(Morphogenesis)的调控,这些过程使生物体形成组织和器官
- 南捷克州南波希米亚州 (捷克语:Jihočeský kraj)是捷克波希米亚地区南部 (也包括摩拉维亚西南部的一部分)的一个州。面积10,056 平方公里,人口627,766 (2006年)。首府捷克布杰约维采
- 秋水仙素秋水仙素(英语:Colchicine)是最初萃取于百合科植物秋水仙的种子和球茎的一种植物碱。它是白色或淡黄色的粉末或针状晶体,有剧毒。最先用于治愈风湿病和痛风,但是它的泻药及促进呕
- 转移酶转移酶是一种催化一个分子(称为供体)的官能团(如甲基或磷酸盐团)转移至另一个分子(称为受体)的酶。 举例来说,一种酶催化以下的化学反应就是转移酶:在这例子中的A就是供体,而B就是受
- 通用转录因子通用转录因子(英语:General transcription factor,GTFs)是最基本的转录因子,为一群转录因子蛋白,键结于DNA的特殊位置以活化转录。GTFs、RNA聚合酶和辅活化子再加上蛋白质组成了转
- 护卫舰护卫舰(英语:corvette)是吨位高于巡逻舰,小于巡防舰,搭载轻武装的舰艇,等级上是属沿岸海域(绿水海军)的中型舰艇,近代海军中多半是排水量1千至2千吨的水准,偶尔会有超过2500吨的特例。
- 球虫球虫(学名:Sphaerozoum fuscum)为球虫科球虫属的动物。分布于太平洋、地中海、大西洋、印度洋,包括东海、海南岛等海域,常生活于表层。
- 消色差透镜消色差透镜或复消色差透镜(achromat)是被设计用来将色差和球面像差减至最小的透镜,属于消色差透镜组。最普通的消色差透镜的形式是双合透镜,这两片透镜分别用两种色散能力不相同
- 硼酸盐硼酸盐是一类含硼的化合物。当中的硼可以与三个氧原子键合成B(OR)3,也可以与四个氧原子键合成B(OR)4-阴离子。硼酸根离子的化学式为BO3−3。它可与金属元素形成盐。在自然界
- 桑格试剂1-氟-2,4-二硝基苯又称2,4-二硝基氟苯,在蛋白质分析中又称为桑格试剂,是一个测定多肽N-端氨基酸的试剂。它最初由弗雷德里克·桑格于1945年发现。可以由氟化钾晶体在常温下的
