解析数论

✍ dations ◷ 2025-11-08 14:26:07 #解析数论
解析数论(analytic number theory),为数论中的分支,它使用由数学分析中发展出的方法,作为工具,来解决数论中的问题。它首次出现在数学家狄利克雷在1837年导入狄利克雷L函数,来证明狄利克雷定理。解析数论的成果中,较广为人知的是在质数(例如质数定理及黎曼ζ函数)及堆叠数论(例如哥德巴赫猜想及华林问题)。解析数论主要分为两种,区分方式主要是因为待求解问题种类的不同,而比较不是因为使用技巧上的基本差异。微积分和复变函数论发展以后,产生了解析数论。该学科的第一个主要成就是狄利克雷用解析方法证明了狄利克雷定理。依靠黎曼ζ函数对素数定理的证明是另一个里程碑。 解析数论是解决数论中艰深问题的重要工具,数论中有些问题必须由解析方法才能提出或解决。 中国的华罗庚开启了中国解析数论学派,王元、陈景润、潘承洞等人在“哥德巴赫猜想”上也有相当进展,陆续证明了“3+4”、“2+3”及“1+2”,其中的“1+2”就是陈氏定理。解析数论的定理及成果比较不是有关整数精确结构的的结果,这方面用代数或是几何上的工具比较合适。解析数论的许多定理多半会预估一些数论相关函数的范围及预计。欧几里得证明了质数有无限多个,可是很难找到可以快速判定一个整数是否是质数的方法(特别是整数很大时)。另外一个也有关系,但比较简单的问题是找到质数的渐近分布,也就是可以大略描述有多少质数小于特定整数。卡尔·高斯在计算大量的质数后提出其猜想,他认为小于或等于一个很大整数N的质数个数,接近以下的定积分波恩哈德·黎曼在1859年利用复变分析以及一个特殊的亚纯函数(后来称为黎曼ζ函数)来推导小于等于特定实数x之质数个数的解析解。值得一提的是,黎曼公式的主要项就是上述的积分,因此让高斯的猜想更加重要。黎曼找到了解析解中的误差项和黎曼ζ函数的复数零点有密切的关系,因此质数分布的形式也和黎曼ζ函数的复数零点有关。雅克·阿达马及查尔斯·让·德·拉谷地普桑(英语:Charles Jean de la Vallée-Poussin)利用黎曼的概念,以及对ζ函数零点的资讯,致力证明高斯的猜想,而且他们证明了若则上述的结果目前称为质数定理,是解析数论的核心结果。简单的说,质数定理提到给定一个大数字N,小于等于N的质数个数大约有N/log(N)个。华林问题是堆叠数论中最重要的问题之一,问题是针对任意大于等于2的整数k,是否可以将任意正整数表示为有限个整数的k次方的和针对平方的例子k = 2,已由拉格朗日在1770年由四平方和定理证明。针对任意整数的例子由大卫·希尔伯特在1909年证明,不过运用的是代数的技巧,没有提出数字个数的上界。戈弗雷·哈罗德·哈代及约翰·恩瑟·李特尔伍德应用解析数论的工具处理此一问题,带来突破性的进展,他们用的工具称为圆法(circle method),可以针对函数G(k)(整数用k次方和表示时,需要的最小整数)提出具体的上界,例如维诺格拉多夫上界为丢番图方程和多项式方程的整解有关。有些研究可能是探讨解的分析情形,也就是依照某种“高度函数”来计算这些解。高斯圆问题(英语:Gauss circle problem)是丢番图方程中的一个重要例子,要求满足下式的整数点(x y)用几何的方式来说,给定在平面上,以原点为圆心,半径是 r {displaystyle r} 的圆,此问题要问的是在此圆内和圆上有多少个格子点。其解为 π r 2 + E ( r ) {displaystyle ,pi r^{2}+E(r),} ,其中 E ( r ) / r 2 → 0 {displaystyle ,E(r)/r^{2},to 0,} 在 r → ∞ {displaystyle ,rto infty ,} 时。不过最难(也是解析数论取得大幅进展)的部分是在确认此误差项 E ( r ) {displaystyle E(r)} 的上界。高斯证明了误差项的渐近行为 E ( r ) = O ( r ) {displaystyle E(r)=O(r)} ,O(r)为大O符号,表示误差项不会超过 r {displaystyle r} 的线性项。而后来瓦茨瓦夫·谢尔宾斯基在1906年证明了 E ( r ) = O ( r 2 / 3 ) {displaystyle E(r)=O(r^{2/3})} 。哈代和爱德蒙·兰道都证明了 E ( r ) = O ( r 1 / 2 ) {displaystyle E(r)=O(r^{1/2})} 不成立( E ( r ) {displaystyle E(r)} 数量级超过 r {displaystyle r} 开根号)。因此以后目标是证明针对每一个 ϵ > 0 {displaystyle epsilon >0} ,都存在实数 C ( ϵ ) {displaystyle C(epsilon )} 使得 E ( r ) ≤ C ( ϵ ) r 1 / 2 + ϵ {displaystyle E(r)leq C(epsilon )r^{1/2+epsilon }} 。2000年马丁·赫胥黎(英语:Martin Huxley)证明了 E ( r ) = O ( r 131 / 208 ) {displaystyle E(r)=O(r^{131/208})} ,是目前最好的结果。On specialized aspects the following books have become especially well-known:Certain topics have not yet reached book form in any depth. Some examples are (i) Montgomery's pair correlation conjecture and the work that initiated from it, (ii) the new results of Goldston, Pintz and Yilidrim on small gaps between primes, and (iii) the Green–Tao theorem showing that arbitrarily long arithmetic progressions of primes exist.

相关

  • 圣灵圣灵(古希腊语:Ἅγιον Πνεῦμα,天主教称为圣神,译自希伯来文“Ruah”) 是在旧约中就存在的,耶和华对摩西说:“嫩的儿子约书亚是心中有圣灵的;你将他领来,按手在他头上,使他站
  • Visceral pleura脏胸膜(英语:Visceral pleura)覆盖于肺表面,并深入至叶间裂内的一层胸膜,叫做脏胸膜。脏胸膜与肺实质连接紧密,所以又称其肺胸膜。
  • GPnotebook家庭医生笔记(英语:GPnotebook)是英国为家庭医生(GP)所建的医学数据库。它是一本线上医学百科全书,提供全球临床医师立即的参考资源。家庭医生笔记数据库内建有超过三万篇资料页面
  • 快筛方法流感快速诊断测试(rapid influenza diagnostic test,简称RIDT)是一个针对流行性感冒的快速诊断测试,是侦测流行性感冒病毒核蛋白抗原。一般用的流感快筛可以在三十分钟以内知道
  • 安色尔字体安色尔字体(英语:uncial)是一种全大写字母的字体,在公元3到8世纪中被拉丁和希腊的抄写员使用。安色尔字体用来书写希腊语、拉丁语和哥特语。早期的安色尔体字母可能是起源于晚期
  • 哺乳动物听小骨进化哺乳动物的听小骨进化过程被认为是生物进化过程中最完备 也是最重要的事件之一。这个进化事件的过程展现了大量的演变过程,并成为预适应和已有结构再作用的最佳范例。在爬行
  • 着丝粒染色体着丝粒(centromere),又称中节,主要作用是使复制的染色体在有丝分裂和减数分裂中可均等地分配到子细胞中。在很多高等真核生物中,着丝粒看起来像是在染色体一个点上的浓缩区
  • 生质燃料生物燃料(英语:Biofuel)、生质燃料或生态燃料,泛指由生物质组成或萃取而成的固体、液体或气体。生物质可以用三种不同的转化方法转化为易于利用、含有能量的物质,包含:热转化,化学
  • 劳工节美国的劳动节(英语:Labor Day)规定在每年九月的第一个星期一,是联邦的法定节假日,用以庆祝工人对经济和社会的贡献。对许多美国人来说劳动节的到来也意味着夏季的结束,同时也是举
  • 法国语言法国语言(法语:Langues régionales ou minoritaires de France)是指法国境内使用的各种语言,法语是法国唯一的官方语言,但是许多居民也使用不同的方言。因为许多外国人移居法国,