首页 >
解析数论
✍ dations ◷ 2025-04-26 12:32:39 #解析数论
解析数论(analytic number theory),为数论中的分支,它使用由数学分析中发展出的方法,作为工具,来解决数论中的问题。它首次出现在数学家狄利克雷在1837年导入狄利克雷L函数,来证明狄利克雷定理。解析数论的成果中,较广为人知的是在质数(例如质数定理及黎曼ζ函数)及堆叠数论(例如哥德巴赫猜想及华林问题)。解析数论主要分为两种,区分方式主要是因为待求解问题种类的不同,而比较不是因为使用技巧上的基本差异。微积分和复变函数论发展以后,产生了解析数论。该学科的第一个主要成就是狄利克雷用解析方法证明了狄利克雷定理。依靠黎曼ζ函数对素数定理的证明是另一个里程碑。
解析数论是解决数论中艰深问题的重要工具,数论中有些问题必须由解析方法才能提出或解决。
中国的华罗庚开启了中国解析数论学派,王元、陈景润、潘承洞等人在“哥德巴赫猜想”上也有相当进展,陆续证明了“3+4”、“2+3”及“1+2”,其中的“1+2”就是陈氏定理。解析数论的定理及成果比较不是有关整数精确结构的的结果,这方面用代数或是几何上的工具比较合适。解析数论的许多定理多半会预估一些数论相关函数的范围及预计。欧几里得证明了质数有无限多个,可是很难找到可以快速判定一个整数是否是质数的方法(特别是整数很大时)。另外一个也有关系,但比较简单的问题是找到质数的渐近分布,也就是可以大略描述有多少质数小于特定整数。卡尔·高斯在计算大量的质数后提出其猜想,他认为小于或等于一个很大整数N的质数个数,接近以下的定积分波恩哈德·黎曼在1859年利用复变分析以及一个特殊的亚纯函数(后来称为黎曼ζ函数)来推导小于等于特定实数x之质数个数的解析解。值得一提的是,黎曼公式的主要项就是上述的积分,因此让高斯的猜想更加重要。黎曼找到了解析解中的误差项和黎曼ζ函数的复数零点有密切的关系,因此质数分布的形式也和黎曼ζ函数的复数零点有关。雅克·阿达马及查尔斯·让·德·拉谷地普桑(英语:Charles Jean de la Vallée-Poussin)利用黎曼的概念,以及对ζ函数零点的资讯,致力证明高斯的猜想,而且他们证明了若则上述的结果目前称为质数定理,是解析数论的核心结果。简单的说,质数定理提到给定一个大数字N,小于等于N的质数个数大约有N/log(N)个。华林问题是堆叠数论中最重要的问题之一,问题是针对任意大于等于2的整数k,是否可以将任意正整数表示为有限个整数的k次方的和针对平方的例子k = 2,已由拉格朗日在1770年由四平方和定理证明。针对任意整数的例子由大卫·希尔伯特在1909年证明,不过运用的是代数的技巧,没有提出数字个数的上界。戈弗雷·哈罗德·哈代及约翰·恩瑟·李特尔伍德应用解析数论的工具处理此一问题,带来突破性的进展,他们用的工具称为圆法(circle method),可以针对函数G(k)(整数用k次方和表示时,需要的最小整数)提出具体的上界,例如维诺格拉多夫上界为丢番图方程和多项式方程的整解有关。有些研究可能是探讨解的分析情形,也就是依照某种“高度函数”来计算这些解。高斯圆问题(英语:Gauss circle problem)是丢番图方程中的一个重要例子,要求满足下式的整数点(x y)用几何的方式来说,给定在平面上,以原点为圆心,半径是
r
{displaystyle r}
的圆,此问题要问的是在此圆内和圆上有多少个格子点。其解为
π
r
2
+
E
(
r
)
{displaystyle ,pi r^{2}+E(r),}
,其中
E
(
r
)
/
r
2
→
0
{displaystyle ,E(r)/r^{2},to 0,}
在
r
→
∞
{displaystyle ,rto infty ,}
时。不过最难(也是解析数论取得大幅进展)的部分是在确认此误差项
E
(
r
)
{displaystyle E(r)}
的上界。高斯证明了误差项的渐近行为
E
(
r
)
=
O
(
r
)
{displaystyle E(r)=O(r)}
,O(r)为大O符号,表示误差项不会超过
r
{displaystyle r}
的线性项。而后来瓦茨瓦夫·谢尔宾斯基在1906年证明了
E
(
r
)
=
O
(
r
2
/
3
)
{displaystyle E(r)=O(r^{2/3})}
。哈代和爱德蒙·兰道都证明了
E
(
r
)
=
O
(
r
1
/
2
)
{displaystyle E(r)=O(r^{1/2})}
不成立(
E
(
r
)
{displaystyle E(r)}
数量级超过
r
{displaystyle r}
开根号)。因此以后目标是证明针对每一个
ϵ
>
0
{displaystyle epsilon >0}
,都存在实数
C
(
ϵ
)
{displaystyle C(epsilon )}
使得
E
(
r
)
≤
C
(
ϵ
)
r
1
/
2
+
ϵ
{displaystyle E(r)leq C(epsilon )r^{1/2+epsilon }}
。2000年马丁·赫胥黎(英语:Martin Huxley)证明了
E
(
r
)
=
O
(
r
131
/
208
)
{displaystyle E(r)=O(r^{131/208})}
,是目前最好的结果。On specialized aspects the following books have become especially well-known:Certain topics have not yet reached book form in any depth. Some examples are
(i) Montgomery's pair correlation conjecture and the work that initiated from it,
(ii) the new results of Goldston, Pintz and Yilidrim on small gaps between primes, and
(iii) the Green–Tao theorem showing that arbitrarily long arithmetic progressions of primes exist.
相关
- 糖尿病世界糖尿病日代表符号“包 圈”(Universal blue circle symbol for diabetes.)糖尿病(拉丁语:diabetes mellitus,缩写为DM,简称diabetes)是一种代谢性疾病,它的特征是患者的血糖长
- 打火机打火机,是一种工具,它可以生出火焰,有燃烧式的和电流式的两种。在大部分地区,它取代了过去的钻木取火、打火石、火折子、火柴等取火方式,成为现代社会的取火象征。燃烧式的打火机
- 哲学家哲学家(英语:Philosopher),哲学的研究者,对哲学怀抱兴趣,拥有广泛的知识,并且能够利用这些知识来解决特定的哲学问题。根据欧洲哲学传统,哲学家研究的主题包括美学、伦理学、知识论
- 金胺O金胺O是一种二芳基甲烷萤光染料,常态下为黄色针状结晶。极易溶于水,易溶于乙醇。金胺O可用于抗酸细菌(例如Mycobacterium), 其方法类似抗酸染色法。 也被当做希夫试剂的萤光版来
- 胎盘早期剥离胎盘早期剥离(Placental abruption)是指胎盘提早和子宫分离,也就是在分娩前就和子宫分离。胎盘早期剥离最常出现在怀孕25周时。症状包括阴道出血、下腹痛,以及足以造成休克的低
- 偏害共生片害共生,又称偏害共栖、偏害共生,是两种生物间共生关系的一种。片害共生有的时候也称为拮抗(antagonism)。在片害共生中,一种生物对另一种产生抑制、伤害作用,甚至杀死对方,但本身
- 卫星互联网接入卫星上网是指由通讯卫星提供的网络存取服务。卫星上网通常需要三大部件。一颗通常位于地球静止轨道的卫星。一个地面站,通常作为网关。还有是天线。卫星上网通信可以分为双通
- 真空包装真空包装是用于将物品放入,并具有高气密性的塑胶或铝箔袋内包装封口,可隔绝气体、液体、日光进入和高度抗韧性。通常情况下需要配合真空包装机一起使用。主要原理是将包装容器
- 齐内丁·齐达内齐内丁·耶齐德·齐达内(法语:Zinedine Yazid Zidane .mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode",
- 玛娅·普丽谢斯卡娅玛娅·米哈伊洛芙娜·普丽谢斯卡娅(俄语:Ма́йя Миха́йловна Плисе́цкая,1925年11月20日-2015年5月2日),俄罗斯芭蕾舞者,师从伊丽莎薇特·盖尔德(Elizavet