首页 >
自由能
✍ dations ◷ 2025-10-26 05:47:31 #自由能
热力学自由能(英语:Thermodynamic free energy)是指一个热力学系统的能量中可以用来对外做功的部分,是热力学态函数。自由能可以作为一个热力学过程能否自发进行的判据。对限定条件不同的热力学过程,热力学自由能有不同表达形式。最常见的有吉布斯自由能G和亥姆霍兹自由能A(或F)。等温等容过程用亥姆霍兹自由能 A = U - TS 作为自发性判据;等温等压过程用吉布斯自由能G = H - TS 作为判据,式中H为焓。两者间存在G = A + pV (p,压强;V,体积)关系。系统经历等温、等体积的热力学过程,可以用亥姆霍兹自由能作为自发性判据。亥姆霍兹自由能定义如下:A
≡
U
−
T
S
{displaystyle Aequiv U-TS}对于一个系统的等温、等体积的热力学过程:其中,U是系统的内能,T是温度, S是熵。亥姆霍兹自由能的变化量等于一个系统在等温条件下能做的最大的功。即:ω
max
=
Δ
A
{displaystyle omega _{text{max}}=Delta A}对于等温、等压的热力学过程,用吉布斯自由能作为该过程自发性的判据。由于化学实验经常在等压条件下完成,因此在化学领域中吉布斯自由能更常用。吉布斯自由能定义如下:G
≡
H
−
T
S
=
U
−
T
S
+
p
V
{displaystyle Gequiv H-TS=U-TS+pV}其中,H是焓, T是温度, S是熵, U是系统的内能,p是压力, V是体积。对于一个系统的等温、等压以及无非体积功的热力学过程:对于体系有非体积功
ω
add
{displaystyle omega _{text{add}}}
的等温、等压的热力学过程,吉布斯自由能的变化等于系统能做的最大非体积功。即:ω
add, max
=
Δ
G
{displaystyle omega _{text{add, max}}=Delta G}上式在处理电功等非体积功问题中扮演了重要角色,例如燃料电池以及电化学电池的设计。亥姆霍兹自由能与正则系综(NVT)配分函数关系:A
=
−
k
T
ln
(
Z
)
{displaystyle {displaystyle A=-kTln left(Zright)}}
,上式中,Z为正则系综配分函数,T为温度,k为玻尔兹曼常量。结合亥姆霍兹自由能的定义式,A
=
U
−
T
S
{displaystyle {displaystyle A=U-TS}}以及热力学基本关系可以得到,d
A
=
−
S
d
T
−
P
d
V
+
μ
d
N
{displaystyle {displaystyle mathrm {d} A=-Smathrm {d} T-Pmathrm {d} V+mu mathrm {d} N}}上式中,μ为化学势,N为粒子数。因此可以根据上式可以得出熵S、压强P以及化学势μ的表达式。S
=
−
(
∂
A
∂
T
)
|
V
,
N
{displaystyle {displaystyle S=-{bigg (}{frac {partial A}{partial T}}{bigg )}{bigg |}_{V,N}}}
,
P
=
−
(
∂
A
∂
V
)
|
T
,
N
{displaystyle {displaystyle P=-{bigg (}{frac {partial A}{partial V}}{bigg )}{bigg |}_{T,N}}}
,
μ
=
(
∂
A
∂
N
)
|
T
,
V
{displaystyle {displaystyle mu ={bigg (}{frac {partial A}{partial N}}{bigg )}{bigg |}_{T,V}}}因为化学反应常常在等压条件下发生,因此等温等压系综在化学领域有很重要的地位。等温等压系综配分函数
Δ
(
N
,
P
,
T
)
{displaystyle Delta (N,P,T)}
可以通过正则系综配分函数
Z
(
N
,
V
,
T
)
{displaystyle Z(N,V,T)}
加权求和得到,Δ
(
N
,
P
,
T
)
=
∫
Z
(
N
,
V
,
T
)
exp
(
−
β
P
V
)
C
d
V
{displaystyle Delta (N,P,T)=int Z(N,V,T)exp(-beta PV)Cmathrm {d} V}上式中
β
=
1
/
k
B
T
{displaystyle beta =1/k_{B}T}
, V 是系统的体积。等温等压系综下吉布斯自由能可以写成如下形式。G
(
N
,
P
,
T
)
=
−
k
B
T
ln
Δ
(
N
,
P
,
T
)
{displaystyle G(N,P,T)=-k_{B}Tln Delta (N,P,T)}热质说在热力学发展初期,广泛用来解释与热相关的物理现象。在热质说中,“热质”从高温物体传递到低温物体,并且发展了诸如自由热(free heat),结合热(combined heat)以及辐射热(radiant heat)等概念。物体含有的全部“热质”共分成两部分,一部分是自由热能,对温度计有所改变者,称为自由热;另一部分无法对温度计造成影响,叫做潜热(latent caloric)。19世纪中期,英国物理学家焦耳的热功当量实验揭示热只是一种能量的形式。但是热质说的影响一直延续到19世纪末。1882年德国物理学家亥姆霍兹延续热质学说把F = E - TS一项叫做“自由能”。用来表示在特定限定下可以“自由”做功的能量总量。等温等压条件下的吉布斯自由能G = H - TS也延续了“自由”一词。1988年IUPAC会议对一些科学术语进行规范,讨论建议去掉“自由”一词,直接称“吉布斯能”(“亥姆霍兹能”同理)。随后,使用“吉布斯能”、“亥姆霍兹能”的书籍、文献越来越多。但是,截止2016年,仍有大量书籍、文献继续使用“吉布斯自由能”以及“亥姆霍兹自由能”。IUPAC建议用字母A(德语“Arbeit” ,功)作为亥姆霍兹能的符号。字母F也继续使用。
相关
- 胸腔外科学胸腔外科学或称心胸肺外科(英语:Cardiothoracic Surgery),是一门医学专科,专门研究胸腔内器官,包括心脏、肺、气道与呼吸系统、胸壁、纵隔、膈肌和食道等,以及这些器官与部位的诊断
- 喷昔洛韦喷昔洛韦(Penciclovir)是鸟嘌呤类似物类抗病毒药物, 用于治疗多种疱疹病毒感染。具有毒性低,病毒敏感性高等特点。喷昔洛韦口服吸收低,常用于局部给药。 泛昔洛韦是喷昔洛韦的前
- 眼睛眼(亦称眼睛、目、目睭)是视觉的器官,可以感知光线,转换为神经中电化学的脉冲。比较复杂的眼睛是一个光学系统,可以收集周遭环境的光线,借由虹膜调整进入眼睛的强度,利用可调整的晶
- 抵抗力免疫(英语:immunity),指生物机体识别和排除抗原物质的一种保护性反应。其中包括特异性免疫(后天免疫系统)与非特异性免疫(先天免疫系统)。“免疫”一词,最早见于中国明代医书《免疫类
- 松三糖松三糖(Melezitose)为一种非还原三糖,可从数种树的汁液中被萃取出来,如落叶松或是黄杉。松三糖可以部分被水解成葡萄糖和松二糖。(松二糖为蔗糖的同分异构体)配合其他的生化检验方
- 喙喙是鸟类上下颌包被的硬角质鞘,相当于哺乳动物吻突、唇和齿的功能。喙的主要功能是取食和梳理羽毛。某些恐龙也有类似的构造,不过不一定与鸟类同源。达尔文正是研究了加拉帕戈
- 收敛剂收敛剂指用来收缩体组织的化学物质,通常用于局部医疗。拉丁语系中的收敛剂一词源自拉丁语“adstringere”,意思是“快速绑紧”,常见的收敛剂包括明矾、炉甘石液、金缕梅等。因
- 大阪市立大学大阪市立大学(日语:大阪市立大学/おおさかしりつだいがく Osaka City University),是位于日本大阪府大阪市的公立大学,简称市大(しだい・いちだい),是旧三商大之一,也是日本第一所“
- 拉沃斯拉夫·鲁日奇卡拉沃斯拉夫·斯捷潘·鲁日奇卡(克罗地亚语:Lavoslav Stjepan Ružička,1887年9月13日克罗地亚武科瓦尔 - 1976年9月26日瑞士),克罗地亚化学家,1939年获诺贝尔化学奖。鲁日奇卡生
- 耳蜗耳蜗(拉丁文,德文,英文:Cochlea)是内耳的一个解剖结构,它和前庭迷路一起组成内耳骨迷路。耳蜗的名称来源于其形状与蜗牛壳的相似性,耳蜗的英文名Cochlea,即是拉丁语中“蜗牛壳”的意
