棋盘多项式

✍ dations ◷ 2025-11-06 02:58:46 #组合数学

组合数学的核心是解决计数问题,其中很重要的即为n个元素的排列方案的计数。一个常见的将排列问题抽象的方法就是将其抽象为棋盘多项式。首先看一个 n × n {\displaystyle n\times n} 的棋盘,n个元素的排列可以看成在这个棋盘上落下n个棋子,其中每一个横行、每一个竖列只允许有一个棋子。而其中棋盘的格子是可以任意的 n × n {\displaystyle n\times n} 的棋盘的子集,这对应了存在一定限制的排列方案。

每一个棋盘对应着一个母函数代表该棋盘中描述无法攻击的棋子排列数。这个母函数即为棋盘多项式。

设C为一棋盘,称 k = 0 n r k ( C ) x k {\displaystyle \sum _{k=0}^{n}{r_{k}}(C){x^{k}}} 为C的棋盘多项式,其中 r k ( C ) {\displaystyle {r_{k}}(C)} 表示k个棋子布到棋盘C的方案数。

结合容斥原理解决受限排列问题。

r i {\displaystyle {r_{i}}} 为 i个棋子布入禁区的方案数,i =1,2,3,…,n。有禁区的布子方案数(即禁区内不布棋子的方案数)为 n ! r 1 ( n 1 ) ! + r 2 ( n 2 ) ! . . . + ( 1 ) n r n {\displaystyle {n!}-{r_{1}}{(n-1)!}+{r_{2}}{(n-2)!}-...+{(-1)^{n}}{r_{n}}}

设事件 A i {\displaystyle A_{i}} 为棋子 i {\displaystyle i} 落入禁区且其余棋子不限定是否落入禁区。那么布子方案数即可用 | A 1 ¯ A 2 ¯ A 3 ¯ A n ¯ | {\displaystyle |{\overline {A_{1}}}\cap {\overline {A_{2}}}\cap {\overline {A_{3}}}\cap \cdots \cap {\overline {A_{n}}}|} 进行表示。该排列数可以用容斥原理求解。即 | A 1 ¯ A 2 ¯ A 3 ¯ A n ¯ | = | A 1 A 2 A 3 A n ¯ | {\displaystyle |{\overline {A_{1}}}\cap {\overline {A_{2}}}\cap {\overline {A_{3}}}\cap \cdots \cap {\overline {A_{n}}}|=|{\overline {A_{1}\cup A_{2}\cup A_{3}\cup \cdots \cup A_{n}}}|} 其中,在棋盘上的不受限排列数为 n ! {\displaystyle n!} ,那么有

其中,至少有一个棋子落入禁区的方案数为 i = 1 n | A i | = r 1 ( n 1 ! ) {\displaystyle \sum _{i=1}^{n}|A_{i}|={r_{1}}(n-1!)} ,至少两个棋子落入进去的方案数为 | i = 1 n j > i A i A j | = r 2 ( n 2 ! ) {\displaystyle |\sum _{i=1}^{n}\sum _{j>i}A_{i}\cap A_{j}|={r_{2}}(n-2!)} ,以此类推,可以得到等式 | A 1 ¯ A 2 ¯ A 3 ¯ A n ¯ | = n ! r 1 ( n 1 ) ! + r 2 ( n 2 ) ! . . . + ( 1 ) n r n {\displaystyle |{\overline {A_{1}}}\cap {\overline {A_{2}}}\cap {\overline {A_{3}}}\cap \cdots \cap {\overline {A_{n}}}|={n!}-{r_{1}}{(n-1)!}+{r_{2}}{(n-2)!}-...+{(-1)^{n}}{r_{n}}}

1.如下图所示,在 4 × 4 {\displaystyle 4\times 4} 的棋盘上,打叉的地方为禁区,求棋子无一落入禁区的排列数。

首先通过排列多项式的性质得到禁区的棋盘多项式为 1 + 6 x + 11 x 2 + 7 x 3 + x 4 {\displaystyle 1+6x+11x^{2}+7x^{3}+x^{4}} 。这样,该棋盘在受限情况下的方案数为 4 ! 6 × 3 ! + 11 × 2 ! 7 × 1 ! + 1 = 4 {\displaystyle 4!-6\times 3!+11\times 2!-7\times 1!+1=4}

2.错排问题,即 n {\displaystyle n} 个元素组成的排列中标号为 i {\displaystyle i} 的元素不排在第 i {\displaystyle i} 位的方案数。

该问题即为受限排列问题。具体到棋盘中,即为在 n × n {\displaystyle n\times n} 的棋盘上,所有的对角线元素都是禁区。对于禁区的棋盘多项式的计算,由于该棋盘中所有元素均不在同一行同一列,根据棋盘多项式的性质容易得到为 ( 1 + x ) n {\displaystyle (1+x)^{n}} 。那么,根据受限排列的性质,得到错排方案数为 n ! C ( n , 1 ) ( n 1 ) ! + C ( n , 2 ) ( n 2 ) ! + + ( 1 ) n 1 C ( n , n ) {\displaystyle n!-C(n,1)(n-1)!+C(n,2)(n-2)!+\cdots +(-1)^{n-1}C(n,n)}

相关

  • 岱喃字陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 哥德尔库尔特·弗雷德里希·哥德尔(德语:Kurt Friedrich Gödel,1906年4月28日-1978年1月14日),出生于奥匈帝国的数学家、逻辑学家和哲学家,维也纳学派(维也纳小组)的成员。哥德尔是二十世
  • 听障奥林匹克运动会听障奥林匹克运动会(英文:Deaflympics),简称听障奥运、听奥,又称听障林匹克运动会、听障运动会,原名世界聋人运动会,是国际听障运动总会(International Committee of Sports for the
  • 世界上发展最快的国家本文包括按实际GDP经济增长率排序的国家和属地列表。2017年数据。
  • 朴叙俊朴叙俊(韩语:박서준,1988年12月16日-),原名朴容圭,韩国男演员。名字常被译作朴书俊、朴瑞俊。曾凭《金子轻松出来吧》获得第六届韩国电视剧节男子新人赏;以及凭《温暖的一句话》获得
  • 崩如语鲁苏语支是藏缅语族的一个小分支,包括以下三种语言。说这些语言的人一共有一万人。
  • 调兵山市调兵山市,原称铁法市,辽宁省铁岭市下辖县级市,位于辽宁省北部,铁岭县和法库县之间,丘陵地带。截至2013年,调兵山市下辖3个镇、2个街道,共计34个行政村、25个社区。截至2013年,调兵山
  • 职业运动员职业运动员(Professional Athletes),通常专职于一项运动上,经由奖金赛而获利。在一些公开的比赛,有时会考量到运动员的实力差距,而禁止职业运动员参加。薪水会拿的比一般人更多。
  • 2011年碧特博格羽毛球黄金大奖赛2011年碧特博格羽毛球黄金大奖赛为第24届碧特博格羽毛球公开赛,是2011年世界羽联大奖赛的其中一站。本届赛事于2011年11月1日-11月6日在德国萨尔州的首府萨尔布吕肯举行,并获
  • 简稚澄简稚澄(1984年-2016年5月12日),台湾桃园市新屋动物保护教育园区(动物收容所)园长。毕业于北一女中、台大兽医系。虽以第一名的成绩考获兽医资格,但最后选择放弃兽医高薪的工作,前往