棋盘多项式

✍ dations ◷ 2025-02-23 16:50:41 #组合数学

组合数学的核心是解决计数问题,其中很重要的即为n个元素的排列方案的计数。一个常见的将排列问题抽象的方法就是将其抽象为棋盘多项式。首先看一个 n × n {\displaystyle n\times n} 的棋盘,n个元素的排列可以看成在这个棋盘上落下n个棋子,其中每一个横行、每一个竖列只允许有一个棋子。而其中棋盘的格子是可以任意的 n × n {\displaystyle n\times n} 的棋盘的子集,这对应了存在一定限制的排列方案。

每一个棋盘对应着一个母函数代表该棋盘中描述无法攻击的棋子排列数。这个母函数即为棋盘多项式。

设C为一棋盘,称 k = 0 n r k ( C ) x k {\displaystyle \sum _{k=0}^{n}{r_{k}}(C){x^{k}}} 为C的棋盘多项式,其中 r k ( C ) {\displaystyle {r_{k}}(C)} 表示k个棋子布到棋盘C的方案数。

结合容斥原理解决受限排列问题。

r i {\displaystyle {r_{i}}} 为 i个棋子布入禁区的方案数,i =1,2,3,…,n。有禁区的布子方案数(即禁区内不布棋子的方案数)为 n ! r 1 ( n 1 ) ! + r 2 ( n 2 ) ! . . . + ( 1 ) n r n {\displaystyle {n!}-{r_{1}}{(n-1)!}+{r_{2}}{(n-2)!}-...+{(-1)^{n}}{r_{n}}}

设事件 A i {\displaystyle A_{i}} 为棋子 i {\displaystyle i} 落入禁区且其余棋子不限定是否落入禁区。那么布子方案数即可用 | A 1 ¯ A 2 ¯ A 3 ¯ A n ¯ | {\displaystyle |{\overline {A_{1}}}\cap {\overline {A_{2}}}\cap {\overline {A_{3}}}\cap \cdots \cap {\overline {A_{n}}}|} 进行表示。该排列数可以用容斥原理求解。即 | A 1 ¯ A 2 ¯ A 3 ¯ A n ¯ | = | A 1 A 2 A 3 A n ¯ | {\displaystyle |{\overline {A_{1}}}\cap {\overline {A_{2}}}\cap {\overline {A_{3}}}\cap \cdots \cap {\overline {A_{n}}}|=|{\overline {A_{1}\cup A_{2}\cup A_{3}\cup \cdots \cup A_{n}}}|} 其中,在棋盘上的不受限排列数为 n ! {\displaystyle n!} ,那么有

其中,至少有一个棋子落入禁区的方案数为 i = 1 n | A i | = r 1 ( n 1 ! ) {\displaystyle \sum _{i=1}^{n}|A_{i}|={r_{1}}(n-1!)} ,至少两个棋子落入进去的方案数为 | i = 1 n j > i A i A j | = r 2 ( n 2 ! ) {\displaystyle |\sum _{i=1}^{n}\sum _{j>i}A_{i}\cap A_{j}|={r_{2}}(n-2!)} ,以此类推,可以得到等式 | A 1 ¯ A 2 ¯ A 3 ¯ A n ¯ | = n ! r 1 ( n 1 ) ! + r 2 ( n 2 ) ! . . . + ( 1 ) n r n {\displaystyle |{\overline {A_{1}}}\cap {\overline {A_{2}}}\cap {\overline {A_{3}}}\cap \cdots \cap {\overline {A_{n}}}|={n!}-{r_{1}}{(n-1)!}+{r_{2}}{(n-2)!}-...+{(-1)^{n}}{r_{n}}}

1.如下图所示,在 4 × 4 {\displaystyle 4\times 4} 的棋盘上,打叉的地方为禁区,求棋子无一落入禁区的排列数。

首先通过排列多项式的性质得到禁区的棋盘多项式为 1 + 6 x + 11 x 2 + 7 x 3 + x 4 {\displaystyle 1+6x+11x^{2}+7x^{3}+x^{4}} 。这样,该棋盘在受限情况下的方案数为 4 ! 6 × 3 ! + 11 × 2 ! 7 × 1 ! + 1 = 4 {\displaystyle 4!-6\times 3!+11\times 2!-7\times 1!+1=4}

2.错排问题,即 n {\displaystyle n} 个元素组成的排列中标号为 i {\displaystyle i} 的元素不排在第 i {\displaystyle i} 位的方案数。

该问题即为受限排列问题。具体到棋盘中,即为在 n × n {\displaystyle n\times n} 的棋盘上,所有的对角线元素都是禁区。对于禁区的棋盘多项式的计算,由于该棋盘中所有元素均不在同一行同一列,根据棋盘多项式的性质容易得到为 ( 1 + x ) n {\displaystyle (1+x)^{n}} 。那么,根据受限排列的性质,得到错排方案数为 n ! C ( n , 1 ) ( n 1 ) ! + C ( n , 2 ) ( n 2 ) ! + + ( 1 ) n 1 C ( n , n ) {\displaystyle n!-C(n,1)(n-1)!+C(n,2)(n-2)!+\cdots +(-1)^{n-1}C(n,n)}

相关

  • 动物总界动物总界(学名:Holozoa)是后鞭毛生物的一个演化支,包括了动物和其它与动物界近缘、但与真菌界远缘的单细胞亲属在内。另外,Holozoa也是长带海鞘属(Distaplia)的旧学名。基于2011年
  • 电台电台在美国依然是一种主要的大众媒体。和大多数其他国家的电台发展史不同,美国的电台在历史上的发展主要依靠那些依赖商业广告赞助为生的盈利性电台。美国政府没有拥有一个播
  • 丹尼尔丹尼尔(Daniel、Daniell、Denier)可以指:
  • 国际标准化组织国际标准化组织(英语:International Organization for Standardization,简称:ISO)成立于1947年2月23日,制定全世界工商业国际标准的国际标准建立机构。ISO总部设于瑞士日内瓦,成员
  • 脚灯社剑桥大学脚灯戏剧俱乐部(英语:Cambridge University Footlights Dramatic Club),通常简称为脚灯社(Footlights),是位于英国剑桥的业余文艺俱乐部,于1883年由剑桥大学的学生成立。脚
  • 大韩海峡朝鲜海峡,是韩国和日本两国之间的海峡,连接黄海、东海和日本海之间的要道,有广义和狭义两种用法。广义的朝鲜海峡指位于朝鲜半岛和九州岛之间的整条水道。朝鲜民主主义人民共和
  • 布莱尔宫布莱尔宫(英语:Blair House)位于美国华盛顿哥伦比亚特区宾夕法尼亚大道1651-1653号,位于白宫斜对面,是美国的国宾馆,传统上每名候任总统,都会于就职前1周,入住布莱尔宾馆。布莱尔宫
  • 大爪草大爪草(学名:)是石竹科大爪草属的植物。分布于北非、印度、北温带以及中国大陆的贵州、黑龙江、云南等地,生长于海拔100米至200米的地区,一般生长在江边草地,目前尚未由人工引种栽
  • 阿尔弗雷德亲王 (爱丁堡和萨克森-科堡-哥达)阿尔弗雷德·亚历山大·威廉·恩斯特·阿尔伯特(英语:Alfred Alexander William Ernest Albert,(1874年10月15日-1899年2月6日),英国女王维多利亚女王的孙子,俄罗斯帝国沙皇亚历山大
  • 花尾鹰䱵花尾鹰䱵(学名:)(又名花尾唇指䱵、花尾唇指鲷、三刀、斩三刀、咬破布、三康、金花、万年瘦、金花鱼 )指为鹰䱵科鹰䱵属的鱼类。分布于日本、台湾岛以及中国南海等海域,属于近岸性