质量摩尔浓度

✍ dations ◷ 2025-06-07 22:10:03 #质量摩尔浓度
在化学中,溶液的重量摩尔浓度(也可称质量摩尔浓度或重量克分子浓度,英语:molality,用b或m表示)是指溶质物质的量 n s o l u t e {displaystyle n_{solute}} 除以溶剂的质量 m s o l v e n t {displaystyle m_{solvent}} :国际单位制中,重量摩尔浓度的单位是mol/kgw。重量摩尔浓度为3mol/kgw的溶液可表示为“3 molal”或“3 m”。但是随着国际单位制的使用,美国在量度方面的权威机构美国国家标准技术研究所认为“molal”和单位符号“m”已经过时,建议使用mol/kgw及其相关国际单位制的单位来表示。将1.0 mol的食盐溶解在2.0 kg的水中,所得盐溶液的重量摩尔浓度m(NaCl) = 0.50 mol/kg。向这个盐溶液中再加入糖后食盐溶液的重量摩尔浓度不变。与体积摩尔浓度或质量浓度相比,配制一定重量摩尔浓度的溶液相对简单:只需准确称量溶剂和溶质的质量即可,而无需测量体积,所以浓度不受温度和压力变化的影响,这是一个质量摩尔浓度的优点。在下文中,溶剂作为溶液的其它成分可以得到与溶质相同的对待,比如对于没有溶质仅有溶剂的溶液,它的重量摩尔浓度b0就是溶剂分子摩尔质量M0的倒数:对于只有一种溶质的溶液,重量摩尔浓度与质量分数的换算关系为:b为重量摩尔浓度; M为溶质的摩尔质量。对于一个没有溶质或只有一种溶剂而含有 n {displaystyle n} 种溶质的溶液,分别用 b i {displaystyle b_{i}} 和 w i {displaystyle w_{i}} 表示第 i {displaystyle i} 种溶质的重量摩尔浓度和质量分数:M i {displaystyle M_{i}} 是溶液中第 i {displaystyle i} 种溶质的摩尔质量; w 0 {displaystyle w_{0}} 是溶剂的质量分数,它既可以写成溶质重量摩尔浓度的函数也可以写成溶质质量分数的函数。对于单一溶质的溶液,重量摩尔浓度与摩尔分数的换算关系:M 0 {displaystyle M_{0}} 是溶剂的摩尔质量。对于由 n {displaystyle n} 种溶质和1种溶剂构成的溶液体系, x i {displaystyle x_{i}} 表示第 i {displaystyle i} 种溶质的摩尔分数:x 0 {displaystyle x_{0}} 是溶剂的摩尔分数,它既可以写成溶质重量摩尔浓度的函数也可以写成溶质摩尔分数的函数。对只有一种溶质的溶液,重量摩尔浓度 b {displaystyle b} 与体积摩尔浓度 c {displaystyle c} 的换算关系为:ρ代表溶液密度, b {displaystyle b} 代表溶质在溶液中的重量摩尔浓度, M {displaystyle M} 为溶质的摩尔质量。 对于由n种溶质和一种溶剂构成的溶液体系:c i {displaystyle c_{i}} 是第 i {displaystyle i} 种溶质的体积摩尔浓度, M 0 {displaystyle M_{0}} 是溶剂的摩尔质量。当溶剂的体积摩尔浓度用 c 0 {displaystyle c_{0}} 表示时,溶剂的体积摩尔浓度可以写成关于溶剂重量摩尔浓度 b 0 {displaystyle b_{0}} 的函数也可用溶质的体积摩尔浓度 c i {displaystyle c_{i}} 的函数表示:重量摩尔浓度与质量浓度间的换算,对于单溶质溶液体系:ρ s o l u t e {displaystyle rho _{solute}} 是溶液的质量浓度, ρ {displaystyle rho } 是溶液的质量密度, b {displaystyle b} 是溶液的重量摩尔浓度, M {displaystyle M} 是溶质的摩尔质量。对于有n种溶质的溶液,第 i {displaystyle i} 种溶质的质量浓度 ρ i {displaystyle rho _{i}} 与重量摩尔浓度 b i {displaystyle b_{i}} 的换算关系如下:ρ 0 {displaystyle rho _{0}} 是溶剂的质量浓度,它可以写成重量摩尔浓度的函数也可以写成质量浓度的函数:b i b j = x i x j = c i c j = ρ i M j ρ j M i = w i M j w j M i , {displaystyle {frac {b_{i}}{b_{j}}}={frac {x_{i}}{x_{j}}}={frac {c_{i}}{c_{j}}}={frac {rho _{i},M_{j}}{rho _{j},M_{i}}}={frac {w_{i},M_{j}}{w_{j},M_{i}}},}由n种溶质和溶剂组成的溶液体系,下表 i {displaystyle i} 和 j {displaystyle j} 可表示所有的成分。医学导航:泌尿系统解剖/生理/发育/细胞病理/酸碱/先天/肿瘤、症状/齐名、尿液手术/注射、药物(G4B)、血检、尿检

相关

  • 苹果公司1976年4月1日(43年338天)苹果公司(英语:Apple Inc.,NASDAQ:AAPL,原称苹果电脑公司(英语:Apple Computer, Inc.),是总部位于美国加州库比蒂诺的跨国科技公司。公司最初由史蒂夫·乔布斯
  • 斯特拉斯堡1法国统计部门在计算土地面积时,不计算面积大于1平方公里的湖泊、池塘、冰川和河口。斯特拉斯堡(法语:Strasbourg;德语:Straßburg)是法国大东部大区与下莱茵省的首府,位于法国国土
  • 演化树系统发生树(英语:phylogenetic tree)又称演化树或进化树(evolutionary tree),是表明被认为具有共同祖先的各物种间演化关系的树状图。是一种亲缘分支分类方法(cladogram)。在图中,每
  • 公丈十米亦称公丈(dekameter),是长度计量单位,是国际单位制之一,符号为dam。该长度单位在实际上的使用很少,少数的使用如在水文学中,测量重力位高度的工具。米(m) · 尧米(Ym) · 泽米(Zm) ·
  • 诸神的黄昏诸神黄昏(挪威语:Ragnarök)指的是北欧神话预言中的一连串巨大劫难,包括了造成许多重要的神(奥丁、索尔、弗雷、海姆达尔、火巨人、霜巨人、洛基等)死亡的大战和无数的自然浩劫,之
  • 人间佛教人间佛教是近代汉传佛教的一场现代化改革运动。民国初年,由于佛教衰退示微,太虚大师开始倡导“人生佛教”,作为推动佛教现代化改革的一个运动, 为因应儒家伦理、基督教慈善、科
  • 公路国务院中央军委测绘机构中国公路交通由《中华人民共和国道路交通法》统一按照行政管理划分权限,其设施建设和维护根据《中华人民共和国公路法》属交通部公路局路政管理;民用公
  • 跳大神跳大神(满语:ᠰᠠᠮᡩᠠᠮᠪᡳ,穆麟德:samdambi)是满族萨满教的一种仪式,“大神”即“野萨满”。是神抓萨满,即神灵附体的萨满。神抓萨满的活动包括医病、驱灾、祈福、占卜、预测等
  • 空拍机四轴飞行器又称四旋翼、四转子,是一种多轴飞行器,有四个旋翼来悬停、维持姿态及平飞。和固定翼飞机不同,它通过旋翼提供的推力使飞机升空。它的四个旋翼大小相同,分布位置接近对
  • 匈牙利人民共和国匈牙利人民共和国(匈牙利语:Magyar Népköztársaság)为1949年到1989年间在匈牙利存在的一个社会主义政权。由匈牙利劳动人民党及其改组而来的匈牙利社会主义工人党一党执政