环境诱导超选择

✍ dations ◷ 2025-06-29 20:32:28 #量子力学,量子测量,涌现

在量子力学里,环境诱导超选择指的是,开放量子系统与外在环境的相互作用限制了对于这量子系统实际能够被实际观测到的物理量:6。波兰物理学者沃杰克‧祖瑞克(英语:Wojciech Zurek)给出环境诱导超选择的英文命名(environment-induced superselection,简写为einselection)。在本条目里,简称为“超选择”。

与早期量子力学(1930年代以前)所注重的孤立量子系统不同,开放量子系统可以与外在环境相互作用。在量子系统与外在环境的相互作用下,每个能够被真实观测到的物理量,会对应地存在一组本征态,在这里称为“优化态”,它们所组成的正交归一基称为“优化基”。由于这相互作用,它们会显得耐久不变,不会各自与环境发生量子纠缠,而另外一些非优化态却显得脆弱不堪,在短暂时间内就会因为量子退相干而被消灭殆尽。这过程展示出,环境怎样诱导出有效的超选择规则,从而发挥出其监督角色;这过程也自然地说明,为什么在经典力学里,只能观测到一些经典物理量,例如位置、动量等等。:6, 73

超选择促使优化态所形成的量子叠加行为不能稳定存在。优化态可以被视为“准经典态”。由于它们能够安然无恙地通过退相干过程,超选择可以相当合理地说明经典世界如何从量子世界出现。:74

在开放量子系统与环境的相互作用之下,主要会产生两种互补的后果::6:3

当开放量子系统与环境相互作用时,为什么环境会青睐优化态,又会压抑其它量子态?:72-76

假设在一个开放量子系统里,有两个正交的量子态 | ψ 1 {\displaystyle |\psi _{1}\rangle } | ψ 2 {\displaystyle |\psi _{2}\rangle } ,它们共同形成标准正交基 { | ψ i ,   i = 1 , 2 } {\displaystyle \{|\psi _{i}\rangle ,\ i=1,2\}} ,例如,它们可以分别代表粒子移动于两种不同的路径。按照冯诺伊曼量子测量纲要(英语:Von Neumann measurement scheme),它们与环境态的共同演化式表示为(在这里,环境的功能就好似测量仪器)

其中, | E 0 {\displaystyle |E_{0}\rangle } 是初始的环境态, | E 1 {\displaystyle |E_{1}\rangle } | E 2 {\displaystyle |E_{2}\rangle } 是演化后的环境态。

注意到量子态 | ψ 1 {\displaystyle |\psi _{1}\rangle } | ψ 2 {\displaystyle |\psi _{2}\rangle } 不会因为开放系统与环境相互作用而改变,因此,环境可以被想像为正在进行一种理想测量,称为量子非破坏性测量(英语:quantum nondemolition measurement)。环境态 | E 0 {\displaystyle |E_{0}\rangle } 会因为系统量子态的不同而演化为不同的环境态 | E 1 {\displaystyle |E_{1}\rangle } | E 2 {\displaystyle |E_{2}\rangle }

设定叠加态 | ψ + {\displaystyle |\psi _{+}\rangle } | ψ {\displaystyle |\psi _{-}\rangle } 分别为

遵守冯诺伊曼量子测量纲要, | ψ ± {\displaystyle |\psi _{\pm }\rangle } 与环境相互作用的演化式为

假设 E 1 | E 2 = 1 {\displaystyle \langle E_{1}|E_{2}\rangle =1} ,则 | E 1 {\displaystyle |E_{1}\rangle } 就是 | E 2 {\displaystyle |E_{2}\rangle } ,两个环境态完全重叠,整个系统的量子态可以写为两个纯态的张量积:

这意味着量子系统与环境彼此之间不存在量子纠缠。对于环境做测量,无法从测量结果推断量子系统是处于量子态 | ψ 1 {\displaystyle |\psi _{1}\rangle } | ψ 2 {\displaystyle |\psi _{2}\rangle } 。量子系统的相干性仍旧停留在量子系统哩,没有退定域至整个系统。

假设 E 1 | E 2 {\displaystyle \langle E_{1}|E_{2}\rangle } 趋于零,即 | E 1 {\displaystyle |E_{1}\rangle } | E 2 {\displaystyle |E_{2}\rangle } 相互正交,没有任何部分相互重叠。现假若得知环境态是 | E 1 {\displaystyle |E_{1}\rangle } ,则系统量子态就是 | ψ 1 {\displaystyle |\psi _{1}\rangle } ,假若得知环境态是 | E 2 {\displaystyle |E_{2}\rangle } ,则系统量子态就是 | ψ 2 {\displaystyle |\psi _{2}\rangle } 。因此,从经典的宏观环境态可以得知开放系统的微观量子态是 | ψ 1 {\displaystyle |\psi _{1}\rangle } | ψ 2 {\displaystyle |\psi _{2}\rangle }

由于 | ψ ± {\displaystyle |\psi _{\pm }\rangle } 与环境的相互作用,开放系统原本独有的量子叠加已扩散至整个系统(开放系统+环境),开放系统与环境之间发生量子纠缠。

设想 | ψ + {\displaystyle |\psi _{+}\rangle } | ψ {\displaystyle |\psi _{-}\rangle } 的量子叠加:

其中, α + {\displaystyle \alpha _{+}} α {\displaystyle \alpha _{-}} 分别是系统处于叠加态 | ψ + {\displaystyle |\psi _{+}\rangle } | ψ {\displaystyle |\psi _{-}\rangle } 的概率幅。

由于 | α {\displaystyle |\alpha \rangle } 与环境相互作用,因此演化为

在量子退相干的机制里, E 1 | E 2 {\displaystyle \langle E_{1}|E_{2}\rangle } 趋于零,假若环境态是 | E 1 {\displaystyle |E_{1}\rangle } ,系统量子态就是 | ψ 1 {\displaystyle |\psi _{1}\rangle } ,假若环境态是 | E 2 {\displaystyle |E_{2}\rangle } ,系统量子态就是 | ψ 2 {\displaystyle |\psi _{2}\rangle } 。从经典的宏观环境态可以得知开放系统的微观量子态是 | ψ 1 {\displaystyle |\psi _{1}\rangle } | ψ 2 {\displaystyle |\psi _{2}\rangle } ,但无法得知是 | ψ + {\displaystyle |\psi _{+}\rangle } | ψ {\displaystyle |\psi _{-}\rangle } 。由此可见,在这里,环境青睐量子态 | ψ 1 {\displaystyle |\psi _{1}\rangle } | ψ 2 {\displaystyle |\psi _{2}\rangle } ,而不青睐它们的叠加态 | ψ + {\displaystyle |\psi _{+}\rangle } | ψ {\displaystyle |\psi _{-}\rangle } 。类似的分析可以将这结果推广至任意叠加态。在这里, | ψ 1 {\displaystyle |\psi _{1}\rangle } | ψ 2 {\displaystyle |\psi _{2}\rangle } 是环境的优化态,环境扮演着监督角色。

从优化态与环境态的共同演化式可以观察到, | ψ 1 {\displaystyle |\psi _{1}\rangle } | ψ 2 {\displaystyle |\psi _{2}\rangle } 不会与环境发生量子纠缠,它们只会分别与环境形成直积态 | ψ 1 | E 1 {\displaystyle |\psi _{1}\rangle |E_{1}\rangle } | ψ 2 | E 2 {\displaystyle |\psi _{2}\rangle |E_{2}\rangle } ,由 | ψ 1 {\displaystyle |\psi _{1}\rangle } | ψ 2 {\displaystyle |\psi _{2}\rangle } 组成的叠加态也会因量子退相干而快速地消声匿迹。因此,可以推论,选择优化态的判据是,在与环境相互作用下,优化态最不会与环境发生量子纠缠,最能够不被量子退相干。这判据称为“稳定判据”,这种选择优化态的方法称为“环境诱导超选择”,简称为“超选择”。

先前提到,环境可以被想像为正在做一种量子非破坏性测量,其所测量的物理量称为“优化可观察量”,环境超选择出优化可观察量。对应于优化态的物理量很容易做测量,例如,路径、位置、动量等等;对应于叠加态的物理量很难做测量获得,因为叠加态会因量子退相干而快速地消声匿迹。

在开放系统与外在环境的相互作用下,假若知道环境态,就可以知道优化态;从读取环境态,就可以知道开放系统的状况,如同读取仪器示数盘的指针所指向的数目,因此,优化态被称为“指针态”。由几个近似正交的指针态所组成的基底称为“指针基”。

优化态能够耐久不变地存在,因此,又被称为“准经典态”。

如右图所示,双缝路径实验是双缝实验的变版。在双缝实验里,从粒子源 S {\displaystyle \mathrm {S} } 发射出来的相干粒子束,照射在一块刻有两条狭缝 S 1 {\displaystyle \mathrm {S1} } S 2 {\displaystyle \mathrm {S2} } 的不透明挡板。在挡板后方有探测屏。粒子抵达探测屏的辐照度会呈黑白相间的条纹,这是粒子的干涉图样,展示于示意图最右边。现在,在挡版后面用激光照射,如果激光的光子被粒子散射,然后被光子探测器吸收,则可大致知道粒子到底是经过哪条狭缝,因为经过狭缝 S 1 {\displaystyle \mathrm {S1} } 的粒子通常会使得光子被探测器 D 1 {\displaystyle \mathrm {D1} } 吸收,而经过狭缝 S 2 {\displaystyle \mathrm {S2} } 的粒子通常会使得光子被探测器 D 2 {\displaystyle \mathrm {D2} } 吸收。由于粒子会被光子搅扰,因此改变轨道,所以原本的干涉图样会变得较为模糊,甚至完全消失,其变化状况依粒子路径的分辨程度而定,而分辨程度与激光的辐照度有关。:63-65

设定 | ψ 1 {\displaystyle |\psi _{1}\rangle } | ψ 2 {\displaystyle |\psi _{2}\rangle } 分别为粒子从狭缝 S 1 {\displaystyle \mathrm {S1} } 、狭缝 S 2 {\displaystyle \mathrm {S2} } 经过的量子态。在两个狭缝的后方分别有探测器 D 1 {\displaystyle D1}

相关

  • J01GA·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码J01(抗菌药)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WHO Collaboratin
  • 三角家庭三角家庭(法语:Ménage à trois)源于法语词,指3人发生性关系并住在同一屋檐下,按字面翻译为“三人家庭”或“三人行”。由于欧洲基督教国家实行一夫一妻制,此名称多指欧洲的夫妇
  • abbr class=abbr title=R50: 对水生生物剧毒R50/abbr警示性质标准词(英语:Risk Phrases,简写:R-phrases)是于《欧联指导标准67/548/EEC 附录III: 有关危险物品与其储备的特殊风险性质》里定义。该列表被集中并再出版于指导标准2001/
  • 德意志奥地利德意志-奥地利共和国(德语:Republik Deutschösterreich oder Deutsch-Österreich)是第一次世界大战结束、奥匈帝国解体后,其境内说德语的人所短暂建立的政权。其德语名Deutsch
  • 抵抗运动在第二次世界大战期间,抵抗运动在每一个占领区,从不合作、提供假情报、政治宣传到藏匿失事飞行员甚至直接武装夺取据点,以许多不同的形式发生。在许多国家,抵抗运动同时也被称作
  • OSCE欧洲安全与合作组织(简称欧安组织;英文:Organization for Security and Co-operation in Europe,缩写:OSCE)是世界上主要的国际组织之一,前身是1975年于冷战期间成立的“欧洲安全与
  • 根河根河位于中国内蒙古自治区呼伦贝尔市,是额尔古纳河上游的一条支流,发源于大兴安岭根河市境内,继续流至额尔古纳市北边形成湿地。根河,蒙古语称作为“葛根高乐”,含意为清澈见底之
  • 当代当代史(英语:Contemporary history)是在时间轴上与当前紧密相连的历史,是现代史的特定角度,即现在的历史,或是与个人相关的历史。当代史一词早在19世纪就已使用,并在21世纪成为一门
  • 南京话拉丁化方案南京话拉丁化方案是对应南京话的拉丁化方案。1902年,时任中国海关官员的德国人赫美玲(Karl Ernst Georg Hemeling)出版了《南京官话(Die Nanking Kuanhua)》一书。此书以威妥玛拼
  • 潮州窑潮州窑是唐、宋时潮州的著名瓷窑,始于唐代,经宋代而延续至元代。主要烧制青瓷、青白瓷、黑釉瓷和赫黄釉瓷。产品有碗、盘、杯、碟、瓶、壶、盂、罐等。其地今广东省潮州市,有笔