连续函数

✍ dations ◷ 2025-08-23 18:06:19 #连续函数
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。举例来说,考虑描述一棵树的高度随时间而变化的函数 h ( t ) {displaystyle h(t)} ,那么这个函数是连续的(除非树被砍断)。又例如,假设 T ( P ) {displaystyle T(P)} 表示地球上某一点 P {displaystyle P} 的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果 M ( t ) {displaystyle M(t)} 表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数 M ( t ) {displaystyle M(t)} 是不连续的。最基本也是最常见的连续函数是定义域为实数集的某个子集、取值也是实数的连续函数。例如前面提到的花的高度,就是属于这一类型。这类函数的连续性可以用直角坐标系中的图像来表示。一个这样的函数是连续的,如果粗略地说,它的图像为一个单一的不破的曲线,并且没有间断、跳跃或无限逼近的振荡。严格来说,设 f {displaystyle f} 是一个从实数集的子集 I ⊂ R {displaystyle mathbf {I} subset mathbb {R} } 射到 J ⊂ R {displaystyle mathbf {J} subset mathbb {R} } 的函数: f : I ⟶ J {displaystyle f:mathbf {I} longrightarrow mathbf {J} } 。 f {displaystyle f} 在 I {displaystyle mathbf {I} } 中的某个点 c {displaystyle c} 处是连续的当且仅当以下的两个条件满足:我们称函数到处连续或处处连续,或者简单的称为连续,如果它在其定义域中的任意一点处都连续。更一般地,当一个函数在定义域中的某个子集的每一点处都连续时,就说这个函数在这个子集上是连续的。不用极限的概念,也可以用下面所谓的 ε − δ {displaystyle varepsilon -delta } 方法来定义实值函数的连续性。仍然考虑函数 f : I ⟶ J {displaystyle f:mathbf {I} longrightarrow mathbf {J} } 。假设 c {displaystyle c} 是 f {displaystyle f} 的定义域中的元素。函数 f {displaystyle f} 被称为是在 c {displaystyle c} 点连续当且仅当以下条件成立:对于任意的正实数 ε > 0 {displaystyle varepsilon >0} ,存在一个正实数 δ > 0 {displaystyle delta >0} 使得对于任意定义域中的 x ∈ I {displaystyle xin mathbf {I} } ,只要 x {displaystyle x} 满足 c − δ < x < c + δ {displaystyle c-delta <x<c+delta } ,就有 f ( c ) − ε < f ( x ) < f ( c ) + ε {displaystyle f(c)-varepsilon <f(x)<f(c)+varepsilon } 成立。连续性的“ ε − δ {displaystyle varepsilon -delta } 定义”由柯西首先给出。更直观地,函数 f {displaystyle f} 是连续的当且仅当任意取一个 J {displaystyle mathbf {J} } 中的点 f ( c ) {displaystyle f(c)} 的邻域 Ω {displaystyle Omega } ,都可以在其定义域 I {displaystyle mathbf {I} } 中选取点 x {displaystyle x} 的足够小的邻域,使得 x {displaystyle x} 的邻域在函数 f {displaystyle f} 上的映射下都会落在 f ( c ) {displaystyle f(c)} 的邻域 Ω {displaystyle Omega } 之内。以上是针对单变量函数(定义域在 R {displaystyle mathbb {R} } 上的函数)的定义,这个定义在推广到多变量函数时也是成立的。度量空间以及拓扑空间之间的连续函数定义见下一节。如果两个函数 f {displaystyle f} 和 g {displaystyle g} 是连续的, λ {displaystyle lambda } 为一个实数,那么 f + g {displaystyle displaystyle f+g} 、 λ f {displaystyle displaystyle lambda f} 和 f g {displaystyle displaystyle fg} 都是连续的。所有连续函数的集合构成一个环,也构成一个向量空间(实际上构成一个代数)。如果对于定义域内的所有 x {displaystyle x} ,都有 g ( x ) ≠ 0 {displaystyle g(x)neq 0} ,那么 f g {displaystyle {frac {f}{g}}} 也是连续的。两个连续函数的复合函数 f ∘ g {displaystyle fcirc g} 也是连续函数。如果实函数 f {displaystyle f} 在闭区间 [ a , b ] {displaystyle } 内连续,且 k {displaystyle k} 是某个 f ( a ) {displaystyle f(a)} 和 f ( b ) {displaystyle f(b)} 之间的数,那么存在某个 [ a , b ] {displaystyle } 内的 c {displaystyle c} ,使得 f ( c ) = k {displaystyle f(c)=k} 。这个定理称为介值定理。例如,如果一个小孩在五岁到十岁之间身高从1米增长到了1.5米,那么期间一定有某一个时刻的身高正好是1.3米。如果 f {displaystyle f} 在 [ a , b ] {displaystyle } 内连续,且 f ( a ) {displaystyle f(a)} 和 f ( b ) {displaystyle f(b)} 一正一负,则中间一定有某一个点 c {displaystyle c} ,使得 f ( c ) = 0 {displaystyle f(c)=0} 。这是介值定理的一个推论。如果 f {displaystyle f} 在闭区间 [ a , b ] {displaystyle } 内连续,则它一定取得最大值,也就是说,总存在 c ∈ [ a , b ] {displaystyle cin } ,使得对于所有的 x ∈ [ a , b ] {displaystyle xin } ,有 f ( c ) ⩾ f ( x ) {displaystyle f(c)geqslant f(x)} 。同样地,函数也一定有最小值。这个定理称为极值定理。(注意如果函数是定义在开区间 ( a , b ) {displaystyle (a,b)} 内,则它不一定有最大值和最小值,例如定义在开区间(0,1)内的函数 f ( x ) = 1 x {displaystyle f(x)={frac {1}{x}}} 。)如果一个函数在定义域中的某个点 f ( c ) {displaystyle f(c)} 可微,则它一定在点 c {displaystyle c} 连续。反过来不成立;连续的函数不一定可微。例如,绝对值函数在点 c = 0 {displaystyle c=0} 连续,但不可微。现在考虑从度量空间 ( X , d X ) {displaystyle (X,d_{X})} 到另一个度量空间 ( Y , d Y ) {displaystyle (Y,d_{Y})} 的函数 f {displaystyle f} 。这个定义可以用序列与极限的语言重述:后一个条件可以减弱为:如上连续函数的定义可以自然地推广到一个拓扑空间到另一拓扑空间的函数:对拓扑空间 X {displaystyle X} 与 Y {displaystyle Y} ,函数 f : X → Y {displaystyle f:Xrightarrow Y} 是连续的当且仅当任何开集 V ⊆ Y {displaystyle Vsubseteq Y} 的逆像 f − 1 ( V ) {displaystyle f^{-1}(V)} 是 X {displaystyle X} 中开集。函数的连续性质在很长时间内被认为是当然的。第一个比较严格的定义归功于伯纳德·波尔查诺。他在1817年用德文写下的定义是这样的:函数 f {displaystyle f} 在 x {displaystyle x} 点是连续的,当且仅当:然后波尔查诺在证明中值定理时用 ϵ {displaystyle epsilon } 来表示所谓“事先给定的量”。六年以后,柯西在1823年也给了一个定义,但此定义还不如波尔查诺前面给出的定义清楚:这里的无穷小指的是:一个量的“绝对值不断而无止境地减小以至于小于任何一个事先给定的量”。现代的 ϵ − δ {displaystyle epsilon -delta } 定义只要把波尔查诺在其证明里的写法中“事先给定的量”用 ϵ {displaystyle epsilon } 来代替就可以了。这个现代定义第一次公开发表在刊物上是1874年由魏尔斯特拉斯的一个学生海涅根据魏尔斯特拉斯的讲义写的。

相关

  • 光谱学光谱学(英语:Spectroscopy)是研究物质发射、吸收或散射的光、声或粒子来研究物质的方法。光谱学也可以被定义为研究光和物质之间相互作用的学科。历史上,光谱学指用可见光来对物
  • 福建中医药大学福建中医药大学是位于福建省福州市的一所高等中医药院校。目前,福建中医药大学拥有旗山校区和屏山校区两个校区。其中,旗山校区位于福州市闽侯上街镇华佗路1号,为福建中医药大
  • 外侧沟外侧沟(英:Lateral sulcus),亦称为外侧裂或侧脑沟,是脑的最为显著的一个解剖构造。外侧沟的分隔大脑三个主要“叶”。外侧沟的下方是颞叶,上方是额叶和顶叶。其中,额叶位于顶叶的前
  • 玻璃碳玻璃碳(glassy carbon),是结合了玻璃和陶瓷的属性的非石墨化碳。特点是耐高温,高硬度(莫氏硬度7),低密度,低电阻,低摩擦,低导热性,高耐化学侵蚀性,不被气体和液体渗透。 玻璃碳作为电极
  • 戒律戒可以指:
  • 柯达剧院杜比剧院(英语:Dolby Theatre),旧名柯达剧院(英语:Kodak Theatre),位于美国加州好莱坞好莱坞大道,是好莱坞高地中心的其中一栋建筑物,于2001年11月9日启用,在2002年开始成为奥斯卡颁奖
  • 墨西哥湾暖流墨西哥湾流,简称湾流(英语:Gulf stream),是大西洋上重要的洋流,以及全球最大的洋流。起源于墨西哥湾,经过佛罗里达海峡沿着美国的东部海域与加拿大纽芬兰省向北,最后跨越北大西洋通
  • 北海油田北海油田是世界著名的石油集中出产区,每日生产大约600万桶。位于大西洋的陆缘海——北海,它是介于欧洲大不列颠岛、挪威和欧洲大陆之间,所出产之石油为沿岸英国,挪威,丹麦和荷兰
  • 博恩代博恩代是刚果民主共和国的城镇,也是楚阿帕省的首府,位于该国西部姆班达卡以东,市内有港口和机场设施,主要经济活动有渔业、农业、畜牧业,2009年人口36,158。
  • 甲醇经济甲醇经济(英语:methanol economy)是一种提议中未来的经济形式,使用甲醇来代替现在广泛使用的化石燃料来用作能量存储,地面交通燃料,以及合成碳氢化合物的原料及其产品。它与提议中