顶点 (几何)

✍ dations ◷ 2025-06-28 23:19:40 #几何术语,多胞形,欧几里得几何

在几何学中,顶点是2条或以上的边、超边、线、线段或曲线等数学对象的交会点。在这个定义之下,多面体或多边形中由2条边或棱所交出的角或顶角其端点称为一个顶点。在抽象几何学(英语:Abstract_polytope)中,顶点是抽象多胞形中的0维元素。

角是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。角的顶点也可以是下列定义的其中之一:

简而言之任何直线、线段或射线的组合,其结果中包含两条直的二元边交于一点者,该点称为顶点

顶点是多边形、多面体或其他高维多胞体的角之端点。为几何结构的边、面或维面相交形成的交点。而包含该顶点的组成之数学对象整体称为一个顶角,其在英语中皆称为Vertex,而顶点图(Vertex figure)探讨的则为顶角的特性,而非只探讨顶点本身。

在多边形中,若一个顶点对应到的顶角,其内角小于180度则称该顶点为凸顶点,否则为凹顶点。更一般地,如果一个n维几何体的其中一个顶点可以使这个几何体与位于这个顶点上之充分地小的n维球体相交的话,则这个顶点为凸顶点。

多胞形的顶点可以对应到图论中的顶点,因为任何多胞形皆可以找到一个对应的边与顶点的图(英语:n-skeleton),而这个几何对象正是图论中的一种数学对象,其顶点可以对应于原始多胞形中的顶点,而这个图可以被视为一维单纯复形,其顶点正是一个图顶点。然而,在图论中,顶点有可能少于两条边(如自环),而在几何中无法存在这种顶角。几何顶点和曲线的顶点之间也有关联。曲线的顶点通常代表曲线的局部极值,在某种意义上,多边形的顶点是无限曲率的点,并且若用平滑曲线来近似一个多边形,则在多边形的每个顶点附近将存在极端曲率的点。

在多面体中,顶点是多面体中3个或以上的面的交会点。一般情况下,多面体顶点的数量可透过欧拉特征数计算得出。任何凸多面体表面的欧拉特征皆符合下列等式:

其中V是顶点数、E是边数、F是面数。这个等式称为欧拉恒等式,由此可知,边的数量恒比顶点和面的数量的总和小2。例如,立方体有12条边和6个面,因此根据欧拉恒等式可以得到有立方体有8个顶点。

平面镶嵌的顶点是三个过更多个镶嵌元素(即拼出平面镶嵌的单个几何图形)的交会点。平面镶嵌通常由多边形组成,且平面镶嵌的顶点同时也是多边形的顶点,然而有例外存在。

在多边形中,主顶点(Principal Vertex)是指多边形中的一个顶点,该顶点相邻两顶点的对角线不与多边形边界相交。更正式的定义如下:有一个简单多边形P,其有顶点 {1, 2, ..., -1} ,其中+1=1使多边形P为封闭结构。在多边形P中,若存在一个顶点i使得多边形P的对角线 仅在(i − 1)点与(i + 1)点上与P的边界相交,则称顶点i为该多边形的主顶点。 主顶点可以分成两种类型:耳顶点和嘴顶点。

若一主顶点对应的对角线位于多边形内部,则这个顶点称为耳顶点。根据双耳定理(英语:Two ears theorem),任何简单多边形都至少会有2个耳顶点。

若一主顶点对应的对角线位于多边形外部,则这个顶点称为嘴顶点。

在计算机图形学中,三维几何结构(在计算机图形学一般称为三维模型)通常会表示为以三角形构成的多面体,其中,顶点所包含的资讯不像几何学中只含有坐标资讯,而会额外地包含其渲染所需的资讯,如颜色、反射特性、纹理和表面法线等。这些顶点的属性会输入到顶点着色器,进而开始计算机图形学的渲染流程。

在描述分子中原子的三维排列方式的分子构型中,位于对应几何结构顶点的原子也称为顶点。

相关

  • 淋巴结淋巴结(lymph node)是淋巴系统的一部分(以往亦称做淋巴腺,但其并没有分泌物质的功能,故称为“腺”并不对),作用类似过滤器,内部蜂窝状的结构聚集了淋巴球,能够将病毒与细菌摧毁,当身体
  • 物理教育物理教育是全世界的中学和大学教育的一个重要组成部分。许多综合大学都拥有物理专业。由于物理学是自然科学和工程技术的基础学科,因此物理也是取得科学和工程学位的必修课程
  • 劳厄马克斯·冯·劳厄(德语:Max von Laue,1879年10月9日-1960年4月24日),德国物理学家,因发现晶体中X射线的衍射现象而获得1914年诺贝尔物理学奖。1879年10月9日,马克斯·劳厄出生于科布
  • 东帝汶总统东帝汶总统即为东帝汶国家元首。东帝汶实行议会制,总统是国家名义上的元首,通过普选产生,任期5年。
  • 展开入侵纳粹德国 斯洛伐克共和国瓦尔特·冯·布劳希奇 费多尔·冯·博克 格尔德·冯·伦德施泰特 斐迪南·查特罗什(英语:Ferdinand Čatloš)米哈伊尔·科瓦列夫(英语:Mikhail Kovalev)
  • 温州医科大学河南医科大学前身是1928年在开封成立的河南大学医科,后改名河南大学医学院。1952年从河南大学独立,更名为河南医学院。1957年迁至郑州,1984年更名为河南医科大学,是以医学为主的
  • 公亩公亩(are)是面积的单位,定义为100平方米,相当于边长为10米的正方形面积。1 公亩等于:转换公式:平方尧米、平方佑米(Ym²) 平方泽米、平方皆米(Zm²) 平方艾米(Em²) 平方拍米(Pm²) 平
  • 朴明勋朴明勋(韩语:박명훈,1975年5月28日-),韩国男演员。较为人熟悉的演出作品包括夺得金球奖最佳外语片、获得第92届奥斯卡金像奖最佳电影的《寄生虫》。
  • 第160特种作战航空团美国陆军第160特种作战航空团(英语:U.S.Army 160th Special Operations Aviation Regiment(Airborne),缩写为 160th SOAR(A)是美国陆军特种作战部队中唯一的航空部队,绰号“暗夜
  • 电动列车电动列车服务(英语:Electric Train Service,缩写:ETS,俗称“双轨电动火车”),是由马来亚铁道公司旗下子公司经营的快速城际电力动车组服务。电动列车服务是继KTM通勤铁路后,马来西亚