顶点 (几何)

✍ dations ◷ 2025-12-04 05:04:32 #几何术语,多胞形,欧几里得几何

在几何学中,顶点是2条或以上的边、超边、线、线段或曲线等数学对象的交会点。在这个定义之下,多面体或多边形中由2条边或棱所交出的角或顶角其端点称为一个顶点。在抽象几何学(英语:Abstract_polytope)中,顶点是抽象多胞形中的0维元素。

角是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。角的顶点也可以是下列定义的其中之一:

简而言之任何直线、线段或射线的组合,其结果中包含两条直的二元边交于一点者,该点称为顶点

顶点是多边形、多面体或其他高维多胞体的角之端点。为几何结构的边、面或维面相交形成的交点。而包含该顶点的组成之数学对象整体称为一个顶角,其在英语中皆称为Vertex,而顶点图(Vertex figure)探讨的则为顶角的特性,而非只探讨顶点本身。

在多边形中,若一个顶点对应到的顶角,其内角小于180度则称该顶点为凸顶点,否则为凹顶点。更一般地,如果一个n维几何体的其中一个顶点可以使这个几何体与位于这个顶点上之充分地小的n维球体相交的话,则这个顶点为凸顶点。

多胞形的顶点可以对应到图论中的顶点,因为任何多胞形皆可以找到一个对应的边与顶点的图(英语:n-skeleton),而这个几何对象正是图论中的一种数学对象,其顶点可以对应于原始多胞形中的顶点,而这个图可以被视为一维单纯复形,其顶点正是一个图顶点。然而,在图论中,顶点有可能少于两条边(如自环),而在几何中无法存在这种顶角。几何顶点和曲线的顶点之间也有关联。曲线的顶点通常代表曲线的局部极值,在某种意义上,多边形的顶点是无限曲率的点,并且若用平滑曲线来近似一个多边形,则在多边形的每个顶点附近将存在极端曲率的点。

在多面体中,顶点是多面体中3个或以上的面的交会点。一般情况下,多面体顶点的数量可透过欧拉特征数计算得出。任何凸多面体表面的欧拉特征皆符合下列等式:

其中V是顶点数、E是边数、F是面数。这个等式称为欧拉恒等式,由此可知,边的数量恒比顶点和面的数量的总和小2。例如,立方体有12条边和6个面,因此根据欧拉恒等式可以得到有立方体有8个顶点。

平面镶嵌的顶点是三个过更多个镶嵌元素(即拼出平面镶嵌的单个几何图形)的交会点。平面镶嵌通常由多边形组成,且平面镶嵌的顶点同时也是多边形的顶点,然而有例外存在。

在多边形中,主顶点(Principal Vertex)是指多边形中的一个顶点,该顶点相邻两顶点的对角线不与多边形边界相交。更正式的定义如下:有一个简单多边形P,其有顶点 {1, 2, ..., -1} ,其中+1=1使多边形P为封闭结构。在多边形P中,若存在一个顶点i使得多边形P的对角线 仅在(i − 1)点与(i + 1)点上与P的边界相交,则称顶点i为该多边形的主顶点。 主顶点可以分成两种类型:耳顶点和嘴顶点。

若一主顶点对应的对角线位于多边形内部,则这个顶点称为耳顶点。根据双耳定理(英语:Two ears theorem),任何简单多边形都至少会有2个耳顶点。

若一主顶点对应的对角线位于多边形外部,则这个顶点称为嘴顶点。

在计算机图形学中,三维几何结构(在计算机图形学一般称为三维模型)通常会表示为以三角形构成的多面体,其中,顶点所包含的资讯不像几何学中只含有坐标资讯,而会额外地包含其渲染所需的资讯,如颜色、反射特性、纹理和表面法线等。这些顶点的属性会输入到顶点着色器,进而开始计算机图形学的渲染流程。

在描述分子中原子的三维排列方式的分子构型中,位于对应几何结构顶点的原子也称为顶点。

相关

  • 显生宙显生宙(Phanerozoic),或称显生元、显生代,是5.41亿年前大量生物出现的时期。显生宙即意为这个时期地球上有显著的生物出现。而那些看不到或者很难见到生物的时代统称为隐生元或
  • 性向认同性向认同(英语:Sexual identity),又译为性取向认同,是指对于自我性吸引行为或情感归属性别对象的身份认同。 性向认同、性取向与性行为是密切相关,但它们也是有区别的。性向认同指
  • 塞门扎格雷格·莱昂纳德·塞门扎(英语:Gregg Leonard Semenza,1956年7月1日-),美国医学家,知名于对生命系统如何利用、调节氧气的研究。他的团队发现HIF-1(缺氧诱导因子-1)所调控的基因能够
  • 复合结果复合结果(英文:Joint effect),是一种因果谬误,系指当某些原因导致多个结果时,在多个结果之间建立因果关联。国家发生战乱,小明一家人因为房子被炮火所毁而从北部逃到南部。有可能是
  • NaIOsub4/sub高碘酸钠是高碘酸的钠盐,有两种形式,偏高碘酸钠(化学式:NaIO4)和原高碘酸钠(化学式:Na5IO6),都可用作有机合成中的氧化剂。高碘酸钠密度为3.865g/cm3,可溶于水,加热时分解为碘酸钠(NaIO3
  • 温子仁温子仁(英语:James Wan,1977年2月26日-,或译为詹姆斯·温或詹姆士·温)是一名知名澳洲男导演、制片人和编剧,是生于马来西亚砂拉越州古晋市的马来西亚华裔澳洲人,时常制作恐怖电影。
  • 库姆坐标:34°39′N 50°53′E / 34.650°N 50.883°E / 34.650; 50.883库姆(波斯文:قم‎)是伊朗伊斯兰共和国库姆省省会,距首都德黑兰西南156千米(97英里)。自伊斯兰教什叶派十二伊
  • 德摩斯梯尼德摩斯梯尼(Δημοσθένης,前384年-前322年),也译作狄摩西尼或德摩斯提尼,古希腊著名的演说家,民主派政治家。早年从伊萨攸(Isaeus)学习修辞,旋教授修辞学。继而从事政治活动,极
  • 布雷西亚省布雷西亚省(意大利语:Provincia di Brescia)是意大利伦巴第大区的一个省。面积1,228平方公里,2005年人口1,169,529人。首府布雷西亚。下分128市镇。
  • 渡岛大岛渡岛大岛(日语:渡島大島/おしまおおしま Oshima Ōshima */?)是位于北海道松前郡松前町西方冲50km的一个无人岛。面积9.73km²是日本最大的无人岛。此岛实际上是由3个火山组成