顶点 (几何)

✍ dations ◷ 2025-08-17 20:02:31 #几何术语,多胞形,欧几里得几何

在几何学中,顶点是2条或以上的边、超边、线、线段或曲线等数学对象的交会点。在这个定义之下,多面体或多边形中由2条边或棱所交出的角或顶角其端点称为一个顶点。在抽象几何学(英语:Abstract_polytope)中,顶点是抽象多胞形中的0维元素。

角是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。角的顶点也可以是下列定义的其中之一:

简而言之任何直线、线段或射线的组合,其结果中包含两条直的二元边交于一点者,该点称为顶点

顶点是多边形、多面体或其他高维多胞体的角之端点。为几何结构的边、面或维面相交形成的交点。而包含该顶点的组成之数学对象整体称为一个顶角,其在英语中皆称为Vertex,而顶点图(Vertex figure)探讨的则为顶角的特性,而非只探讨顶点本身。

在多边形中,若一个顶点对应到的顶角,其内角小于180度则称该顶点为凸顶点,否则为凹顶点。更一般地,如果一个n维几何体的其中一个顶点可以使这个几何体与位于这个顶点上之充分地小的n维球体相交的话,则这个顶点为凸顶点。

多胞形的顶点可以对应到图论中的顶点,因为任何多胞形皆可以找到一个对应的边与顶点的图(英语:n-skeleton),而这个几何对象正是图论中的一种数学对象,其顶点可以对应于原始多胞形中的顶点,而这个图可以被视为一维单纯复形,其顶点正是一个图顶点。然而,在图论中,顶点有可能少于两条边(如自环),而在几何中无法存在这种顶角。几何顶点和曲线的顶点之间也有关联。曲线的顶点通常代表曲线的局部极值,在某种意义上,多边形的顶点是无限曲率的点,并且若用平滑曲线来近似一个多边形,则在多边形的每个顶点附近将存在极端曲率的点。

在多面体中,顶点是多面体中3个或以上的面的交会点。一般情况下,多面体顶点的数量可透过欧拉特征数计算得出。任何凸多面体表面的欧拉特征皆符合下列等式:

其中V是顶点数、E是边数、F是面数。这个等式称为欧拉恒等式,由此可知,边的数量恒比顶点和面的数量的总和小2。例如,立方体有12条边和6个面,因此根据欧拉恒等式可以得到有立方体有8个顶点。

平面镶嵌的顶点是三个过更多个镶嵌元素(即拼出平面镶嵌的单个几何图形)的交会点。平面镶嵌通常由多边形组成,且平面镶嵌的顶点同时也是多边形的顶点,然而有例外存在。

在多边形中,主顶点(Principal Vertex)是指多边形中的一个顶点,该顶点相邻两顶点的对角线不与多边形边界相交。更正式的定义如下:有一个简单多边形P,其有顶点 {1, 2, ..., -1} ,其中+1=1使多边形P为封闭结构。在多边形P中,若存在一个顶点i使得多边形P的对角线 仅在(i − 1)点与(i + 1)点上与P的边界相交,则称顶点i为该多边形的主顶点。 主顶点可以分成两种类型:耳顶点和嘴顶点。

若一主顶点对应的对角线位于多边形内部,则这个顶点称为耳顶点。根据双耳定理(英语:Two ears theorem),任何简单多边形都至少会有2个耳顶点。

若一主顶点对应的对角线位于多边形外部,则这个顶点称为嘴顶点。

在计算机图形学中,三维几何结构(在计算机图形学一般称为三维模型)通常会表示为以三角形构成的多面体,其中,顶点所包含的资讯不像几何学中只含有坐标资讯,而会额外地包含其渲染所需的资讯,如颜色、反射特性、纹理和表面法线等。这些顶点的属性会输入到顶点着色器,进而开始计算机图形学的渲染流程。

在描述分子中原子的三维排列方式的分子构型中,位于对应几何结构顶点的原子也称为顶点。

相关

  • 免疫接种免疫(英语:immunity),指生物机体识别和排除抗原物质的一种保护性反应。其中包括特异性免疫(后天免疫系统)与非特异性免疫(先天免疫系统)。“免疫”一词,最早见于中国明代医书《免疫类
  • 产褥热产褥热(puerperal fever)也称为产后感染(postpartum infections)、产褥感染(Puerperal infections)或产褥期发热,是在分娩、流产或是堕胎后,产道的细菌性感染。其症状一般会包括发烧
  • 静脉成像静脉成像(英语:Venography,也作 phlebography、ascending phlebography)是将一种特殊的染料注入静脉后,利用X射线拍摄静脉的血管照影方法。染料必须要通过一根导管不断地注入人体
  • 挥发性挥发性,在化学、物理和热力学的领域中,是指物质汽化的程度。在某一温度下,蒸气压越高的物质越容易汽化,也就是挥发性越高。挥发性通常用来指液体,但也可用来描述一些不须经过液态
  • 龙岩市龙岩市(闽南语白话字:Lêng-nâ-chhī;客语白话字:Liùng-ngâm-sṳ),通称闽西,是中华人民共和国福建省下辖的地级市,位于福建省西南部。市境北接三明市,东达泉州市,东南界漳州市,西南
  • 菲利普·霍瓦特菲利普·霍瓦特(法语:Philippe Horvath,1970年4月17日-),法国分子生物学家、杜邦公司职员。他参与了CRISPR-Cas技术的开发,该技术是基因编辑的重要工具。相关的研究自2002年底开始,
  • HaskellHaskell(发音为/ˈhæskəl/)是一种标准化的,通用的纯函数编程语言,有非限定性语义和强静态类型。它的命名源自美国逻辑学家哈斯凯尔·加里,他在数理逻辑方面上的工作使得函数式
  • 1933年授权法《授权法》(德语:Ermächtigungsgesetz),正式名称是《解救人民与帝国苦难法》(Gesetz zur Behebung der Not von Volk und Reich),在1933年3月23日由德国帝国议会(英语:Reichstag (We
  • 约翰内斯·劳约翰内斯·劳(Johannes Rau,1931年1月16日-2006年1月27日),德国政治家,于1999年7月1日—2004年6月30日间出任德国联邦总统。劳氏出生于伍珀塔尔市一个新教家庭,在5名兄弟姊妹中排行
  • 春耕节御耕节(高棉语:ព្រះរាជពីធីច្រត់ព្រះនង្គ័ល),泰国称,春耕节(泰语:วันพืชมงคล,皇家泰语转写通用系统:Wan Phuetcha Mongkhon),是柬埔寨和泰国的传