整数分割

✍ dations ◷ 2024-12-22 14:47:48 #整数分割
一个正整数可以写成一些正整数的和。在数论上,跟这些和式有关的问题称为整数拆分、整数剖分、整数分割、分割数或切割数(英语:Integer partition)。其中最常见的问题就是给定正整数 n {displaystyle n} ,求不同数组 ( a 1 , a 2 , . . . , a k ) {displaystyle (a_{1},a_{2},...,a_{k})} 的数目,符合下面的条件:分割函数p(n)是求符合以上第一、二个条件的数组数目。4可以用5种方法写成和式:4, 3+1, 2+2, 2+1+1, 1+1+1+1。因此 p ( 4 ) = 5 {displaystyle p(4)=5} 。定义 p ( 0 ) = 1 {displaystyle p(0)=1} ,若n为负数则 p ( n ) = 0 {displaystyle p(n)=0} 。此函数应用于对称多项式及对称群的表示理论等。分割函数p(n),n从0开始:每种分割方法都可用Ferrers图示表示。Ferrers图示是将第1行放 a 1 {displaystyle a_{1}} 个方格,第2行放 a 2 {displaystyle a_{2}} 个方格……第 k {displaystyle k} 行放 a k {displaystyle a_{k}} 个方格,来表示整数分割的其中一个方法。借助Ferrers图示,可以推导出许多恒等式:证明:将表示前者其中一个数组的Ferrers图示沿对角线反射,便得到后者的一个数组。即两者一一对应,因此其数目相同。例如 k=3,n=6:此外,例如 n = 8 {displaystyle n=8} :p ( n ) {displaystyle p(n)} 的生成函数是当|x|<1,右边可写成:p ( n ) {displaystyle p(n)} 生成函数的倒数为欧拉函数,利用五边形数定理可得到以下的展开式:将 p ( n ) {displaystyle p(n)} 生成函数配合五边形数定理,可以得到以下的递归关系式其中 q i {displaystyle q_{i}} 是第 i {displaystyle i} 个广义五边形数。一个杨氏矩阵与一个整数分拆一一对应,也就是说整数分拆的个数等于相应的杨氏矩阵的个数。如图表示一个10=5+4+1的分拆。利用杨氏矩阵来表示的 分拆更具有直观性,和可处理性,下面是几个例子。整数分拆(10=5+4+1)对应的杨氏矩阵沿x=y轴翻转得到新的杨氏矩阵。它对应分拆为10=3+2+2+2+1。渐近式:这式子是1918年哈代和拉马努金,以及1920年J. V. Uspensky独立发现的。1937年,Hans Rademacher得出一个更佳的结果:其中( m , n ) = 1 {displaystyle (m,n)=1} 表示 m , n {displaystyle m,n} 互质时才计算那项。 s ( m , k ) {displaystyle s(m,k)} 表示戴德金和。这条公式的证明用上了和戴德金η函数、福特圆(英语:Ford circle)、法里数列、模群(英语:Modular group)。在将 n {displaystyle n} 表示成正整数之和的所有和式之中,任意正整数 r {displaystyle r} 作为和项出现在这些式子内的次数,跟每条和式中出现 r {displaystyle r} 次或以上的正整数数目,相同。当 r = 1 {displaystyle r=1} 时,此定理又称为Stanley定理。以 n = 5 {displaystyle n=5} 为例:以下叙述带有附加条件的分拆。考虑满足下面条件分拆及分拆的每个数都不相等。生成函数是考虑满足下面条件分拆生成函数是差分拆的个数与奇分拆的个数是一样多的。可以通过杨表证明。当限定将 n {displaystyle n} 表示成刚好 k {displaystyle k} 个正整数之和时,可以表示为 p k ( n ) {displaystyle p_{k}(n)} 。显然, p ( n ) = ∑ k = 1 n p k ( n ) {displaystyle p(n)=sum _{k=1}^{n}p_{k}(n)} 。不少数学家亦有研究按以下方式分拆的方法数目:

相关

  • 弥漫性肺病间质性肺病(Interstitial Lung Disease(ILD),又称为弥漫性肺病 Diffuse Parenchymal Lung Disease(DPLD))是一群主要侵犯肺泡上皮细胞,肺微血管内皮细胞、基底膜以及肺内血管及淋巴
  • 疼痛身体的疼痛(pain)指通常由身体损伤、病患或不良的外部刺激所引起的不舒服感觉。出于临床研究的需要,国际疼痛研究国际疼痛研究协会(英语:International Association for the Stud
  • 查理定律查理定律(英语:Charles's law),又称查理-盖-吕萨克定律,是盖-吕萨克在1802年发布,但他参考了雅克·查理(英语:Jacques Charles)的研究,故后来该定律多称作查理定律。当压强不变时,理想
  • 维生素E维生素E(英语:Vitamin E)是一种脂溶性维生素,是最主要的抗氧化剂之一。溶于脂肪和乙醇等有机溶剂中,不溶于水,对热、酸稳定,对碱不稳定,对氧敏感,对热不敏感,但油炸时维生素E活性明显
  • 玻利维亚面积以下资讯是以2019年估计家用电源国家领袖国内生产总值(购买力平价) 以下资讯是以2016年估计国内生产总值(国际汇率) 以下资讯是以2016年估计人类发展指数 以下资讯是以2018
  • 二合字母二合字母(digraph、或称二重音字、二重字),在字母系统上是由2个字母组合成的语音,而组成的语音与个别字母的发音不同。且能由二合字母表记出新的语音(音位)。在一些发音变化的场合
  • 黄体制剂黄体制剂(英语:Progestin)是一种合成的孕激素,与孕酮有类似效果。Progestin的两种最重要用途为激素避孕(英语:Hormonal contraception)(独立或与雌激素一同使用)以及作为激素替代疗法
  • 爱德华六世爱德华六世(英语:Edward VI;1537年10月12日-1553年7月6日),英格兰与爱尔兰国王,1547年1月28日即位,同年2月20日加冕时仅九岁。他是亨利八世和珍·西摩的儿子,为都铎王朝第三任君主,也
  • 约翰·霍普克罗夫特约翰·爱德华·霍普克洛夫特(英语:John Edward Hopcroft,1939年10月7日-),生于美国华盛顿州西雅图市,理论计算机科学家,为1986年图灵奖得主。在形式语言,计算理论及数据结构领域中,由
  • 纳戈尔诺-卡拉巴赫纳戈尔诺-卡拉巴赫(亚美尼亚语:Լեռնային Ղարաբաղ、阿塞拜疆语:Dağlıq Qarabağ、英语:Nagorno Karabakh),是位于南高加索的一个内陆地区,介于下卡拉巴赫与赞格祖