首页 >
整数分割
✍ dations ◷ 2025-06-28 03:31:10 #整数分割
一个正整数可以写成一些正整数的和。在数论上,跟这些和式有关的问题称为整数拆分、整数剖分、整数分割、分割数或切割数(英语:Integer partition)。其中最常见的问题就是给定正整数
n
{displaystyle n}
,求不同数组
(
a
1
,
a
2
,
.
.
.
,
a
k
)
{displaystyle (a_{1},a_{2},...,a_{k})}
的数目,符合下面的条件:分割函数p(n)是求符合以上第一、二个条件的数组数目。4可以用5种方法写成和式:4, 3+1, 2+2, 2+1+1, 1+1+1+1。因此
p
(
4
)
=
5
{displaystyle p(4)=5}
。定义
p
(
0
)
=
1
{displaystyle p(0)=1}
,若n为负数则
p
(
n
)
=
0
{displaystyle p(n)=0}
。此函数应用于对称多项式及对称群的表示理论等。分割函数p(n),n从0开始:每种分割方法都可用Ferrers图示表示。Ferrers图示是将第1行放
a
1
{displaystyle a_{1}}
个方格,第2行放
a
2
{displaystyle a_{2}}
个方格……第
k
{displaystyle k}
行放
a
k
{displaystyle a_{k}}
个方格,来表示整数分割的其中一个方法。借助Ferrers图示,可以推导出许多恒等式:证明:将表示前者其中一个数组的Ferrers图示沿对角线反射,便得到后者的一个数组。即两者一一对应,因此其数目相同。例如 k=3,n=6:此外,例如
n
=
8
{displaystyle n=8}
:p
(
n
)
{displaystyle p(n)}
的生成函数是当|x|<1,右边可写成:p
(
n
)
{displaystyle p(n)}
生成函数的倒数为欧拉函数,利用五边形数定理可得到以下的展开式:将
p
(
n
)
{displaystyle p(n)}
生成函数配合五边形数定理,可以得到以下的递归关系式其中
q
i
{displaystyle q_{i}}
是第
i
{displaystyle i}
个广义五边形数。一个杨氏矩阵与一个整数分拆一一对应,也就是说整数分拆的个数等于相应的杨氏矩阵的个数。如图表示一个10=5+4+1的分拆。利用杨氏矩阵来表示的
分拆更具有直观性,和可处理性,下面是几个例子。整数分拆(10=5+4+1)对应的杨氏矩阵沿x=y轴翻转得到新的杨氏矩阵。它对应分拆为10=3+2+2+2+1。渐近式:这式子是1918年哈代和拉马努金,以及1920年J. V. Uspensky独立发现的。1937年,Hans Rademacher得出一个更佳的结果:其中(
m
,
n
)
=
1
{displaystyle (m,n)=1}
表示
m
,
n
{displaystyle m,n}
互质时才计算那项。
s
(
m
,
k
)
{displaystyle s(m,k)}
表示戴德金和。这条公式的证明用上了和戴德金η函数、福特圆(英语:Ford circle)、法里数列、模群(英语:Modular group)。在将
n
{displaystyle n}
表示成正整数之和的所有和式之中,任意正整数
r
{displaystyle r}
作为和项出现在这些式子内的次数,跟每条和式中出现
r
{displaystyle r}
次或以上的正整数数目,相同。当
r
=
1
{displaystyle r=1}
时,此定理又称为Stanley定理。以
n
=
5
{displaystyle n=5}
为例:以下叙述带有附加条件的分拆。考虑满足下面条件分拆及分拆的每个数都不相等。生成函数是考虑满足下面条件分拆生成函数是差分拆的个数与奇分拆的个数是一样多的。可以通过杨表证明。当限定将
n
{displaystyle n}
表示成刚好
k
{displaystyle k}
个正整数之和时,可以表示为
p
k
(
n
)
{displaystyle p_{k}(n)}
。显然,
p
(
n
)
=
∑
k
=
1
n
p
k
(
n
)
{displaystyle p(n)=sum _{k=1}^{n}p_{k}(n)}
。不少数学家亦有研究按以下方式分拆的方法数目:
相关
- 心得安普萘洛尔(Propranolol)属于一种非选择性Β受体阻断药,常用于治疗高血压、多种心律不整、甲状腺功能亢进症、微血管瘤(英语:capillary hemangioma)、表演焦虑症(英语:performance anx
- 曲霉菌See List of Aspergillus species麹菌属(Aspergillus)是一个由几百种多细胞霉菌菌种所组成的菌属,在许多气候条件下皆可发现它们的踪影。麹菌属于1729年被皮耶尔·安东尼奥·米
- INN国际非专利药品名称,简称INN(International Nonproprietary Name for Pharmaceutical Substances),是世界卫生组织给每种药品的一个官方的非专利性名称。INN是新药开发者在新药
- X染色体易裂症X染色体易裂症(Fragile X syndrome (FXS)),或译X染色体脆折症、染色体易脆症等,是一种可能造成智能障碍的病症。患病以男性为主,相较女性严重,可能睾丸较大、咬合不正、自闭症、肌
- 阿瑟·柯南·道尔阿瑟·伊格纳修斯·柯南·道尔爵士(Sir Arthur Ignatius Conan Doyle,1859年5月22日 - 1930年7月7日),英国作家、医生。因塑造了成功的侦探人物──福尔摩斯,而成为侦探小说作家
- 元会运世元、会、运、世是中国北宋理学家邵雍所提出的用语,是一种用以推算世界历史年代的周期单位的理论。他把世界从开始到消灭的一个周期叫做一元。按照一年十二月,一月三十日,一日十
- 内夫反应内夫反应(Nef反应)是一级或二级硝基化合物负离子在酸中水解,生成醛酮和一氧化二氮的反应。反应以约翰·内夫的名字命名。1894年,他用硝基乙烷的钠盐与硫酸反应,得到了85-89%产率
- 涅伽达三期文化奈加代三期文化(英语:Naqada III)是古埃及史前历史的奈加代文化的最后阶段,可以追溯到大约公元前3200年至3000年。由奈加代二期形成的国家,在此期间变得非常常见。此时国王拥有
- 子宫出血经血过多(Menorrhagia)描述女性在月经期间经血量过多的情形,属于功能失调性子宫出血的一种。非正常的子宫出血可能肇因于生殖道结构异常、无排卵(英语:anovulation)、出血疾病、激
- r̥齿龈颤音是辅音的一种类型, 在很多语言中使用,如俄语、藏语、西班牙语、亚美尼亚语和波兰语、意大利语、瑞典语、德语、阿拉伯语、挪威语、冰岛语、芬兰语、马来语、蒙古语、