二项式系数

✍ dations ◷ 2024-12-22 22:55:04 #二项式系数
在数学上,二项式系数是二项式定理中各项的系数。一般而言,二项式系数由两个非负整数 n 和 k 为参数决定,写作 ( n k ) {displaystyle {tbinom {n}{k}}} ,定义为 ( 1 + x ) n {displaystyle (1+x)^{n}} 的多项式展开式中, x k {displaystyle x^{k}} 项的系数,因此一定是非负整数。如果将二项式系数 ( n 0 ) , ( n 1 ) , … , ( n n ) {displaystyle {binom {n}{0}},{binom {n}{1}},dots ,{binom {n}{n}}} 写成一行,再依照 n = 0 , 1 , 2 , … {displaystyle n=0,1,2,dots } 顺序由上往下排列,则构成帕斯卡三角形。二项式系数常见于各数学领域中,尤其是组合数学。事实上, ( n k ) {displaystyle {tbinom {n}{k}}} 可以被理解为从 n {displaystyle n} 个相异元素中取出 k {displaystyle k} 个元素的方法数,所以 ( n k ) {displaystyle {tbinom {n}{k}}} 大多读作“ n {displaystyle n} 取 k {displaystyle k} ”。二项式系数 ( n k ) {displaystyle {tbinom {n}{k}}} 的定义可以推广至 n {displaystyle n} 是复数的情况,而且仍然被称为二项式系数。虽然二项式系数在公元10世纪就已经被发现(见帕斯卡三角形),但表达式 ( n k ) {displaystyle {tbinom {n}{k}}} 却是到1826年才由安德烈亚斯·冯·厄廷格豪森首次始用。最早探讨二项式系数的论述是十世纪的 Halayudha(英语:Halayudha)写的印度教典籍《Pingala的计量圣典》(chandaḥśāstra)。约1150年,印度数学家Bhaskaracharya于其著作《Lilavati》 中给出一个简单的描述。二项式系数亦有不同的符号表达方式,包括: C ( n , k ) {displaystyle C(n,k)} 、 n C k {displaystyle _{n}C_{k}} 、 n C k {displaystyle ^{n}C_{k}} 、 C n k {displaystyle C_{n}^{k}} 、 C k n {displaystyle C_{k}^{n}} ,其中的 C 代表组合(combinations)或选择(choices)。很多计算机使用含有 C 的变种记号,使得算式只占一行的空间,相同理由也发生在置换数 P k n {displaystyle P_{k}^{n}} ,例如写作 P(n, k)。对于非负整数 n {displaystyle n} 和 k {displaystyle k} ,二项式系数 ( n k ) {displaystyle {tbinom {n}{k}}} 定义为 ( 1 + x ) n {displaystyle (1+x)^{n}} 的多项式展开式中, x k {displaystyle x^{k}} 项的系数,即事实上,若 x {displaystyle x} 、 y {displaystyle y} 为交换环上的元素,则此数的另一出处在组合数学,表达了从 n {displaystyle n} 物中,不计较次序取 k {displaystyle k} 物有多少方式,亦即从一 n {displaystyle n} 元素集合中所能组成 k {displaystyle k} 元素子集的数量。此定义与上述定义相同,理由如下:若将幂 ( 1 + X ) n {displaystyle (1+X)^{n}} 的 n {displaystyle n} 个因数逐一标记为 i {displaystyle i} (从1至 n {displaystyle n} ),则任一 k {displaystyle k} 元素子集则建构成展式中的一个 X k {displaystyle X^{k}} 项,故此该单项的系数等如此种子集的数量。亦因此,就任何自然数 n {displaystyle n} 和 k {displaystyle k} 而言, ( n k ) {displaystyle {tbinom {n}{k}}} 亦为自然数。此外,二项式系数亦见于很多组合问题的解答中,如由 n {displaystyle n} 个位元(如数字0或1)组成的所有序列中,其和为 k {displaystyle k} 的数目为 ( n k ) {displaystyle {tbinom {n}{k}}} ,又如算式 k = a 1 + a 2 + ⋯ + a n {displaystyle k=a_{1}+a_{2}+cdots +a_{n}} ,其中每一 a i {displaystyle a_{i}} 均为非负整数,则有 ( n + k − 1 k ) {displaystyle {tbinom {n+k-1}{k}}} 种写法。这些例子中,大部分可视作等同于点算 k {displaystyle k} 个元素的组合的数量。除展开二项式或点算组合数量之外,尚有多种方式计算 ( n k ) {displaystyle {tbinom {n}{k}}} 的值。以下递归公式可计算二项式系数:其中特别指定:此公式可由计算 ( 1 + X ) n − 1 ( 1 + X ) {displaystyle (1+X)^{n-1}(1+X)} 中的 X k {displaystyle X^{k}} 项,或点算集合 { 1 , 2 , ⋯ , n } {displaystyle left{1,2,cdots ,nright}} 的 k {displaystyle k} 个元素组合中包含 n {displaystyle n} 与不包含 n {displaystyle n} 的数量得出。显然,如果 k > n {displaystyle k>n} ,则 ( n k ) = 0 {displaystyle {tbinom {n}{k}}=0} 。而且对所有 n {displaystyle n} , ( n n ) = 1 {displaystyle {tbinom {n}{n}}=1} ,故此上述递归公式可于此等情况下中断。递归公式可用作建构帕斯卡三角形。个别二项式系数可用以下公式计算:上式中第一个分数的分子是一阶乘幂。此公式可以二项式系数在计算组合数量的意义理解:分子为从 n {displaystyle n} 个元素中取出 k {displaystyle k} 个元素的序列之数量,当中包含同样的元素但不同排列次序的序列。分母则计算同样的 k {displaystyle k} 个元素可有多少种排序方式。二项式系数最简洁的表达式是阶乘:其中“ n ! {displaystyle n!} ”是 n {displaystyle n} 的阶乘,此公式从上述乘数公式中分子分母各乘以 ( n − k ) ! {displaystyle (n-k)!} 取得,所以此公式中的分子分母有众同共同因子。除非先行抵销两边中的共同因子,否则以此公式进行计算时较率欠佳,尤因阶乘的数值增长特快。惟此公式展示了二项式系数的对称特性:( n k ) = ( n n − k ) for    0 ≤ k ≤ n . {displaystyle {binom {n}{k}}={binom {n}{n-k}}quad {mbox{for }} 0leq kleq n.}(1)若将 n {displaystyle n} 换成任意数值(负数、实数或复数) α {displaystyle alpha } ,甚至是在任何能为正整数给出逆元素的交换环中的一元素,则二项式系数可籍乘数公式扩展:此定义能使二项式公式一般化(其中一单项为1),故 ( α k ) {displaystyle {tbinom {alpha }{k}}} 仍能相称地称作二项式系数:( 1 + X ) α = ∑ k = 0 ∞ ( α k ) X k . {displaystyle (1+X)^{alpha }=sum _{k=0}^{infty }{alpha choose k}X^{k}.}(2)此公式对任何复数 α {displaystyle alpha } 及 X {displaystyle X} , | X | < 1 {displaystyle leftvert Xrightvert <1} 时成立,故此亦可视作 X {displaystyle X} 的幂级数的恒等式,即系数为常数1,任意幂之级数定义,且在此定义下,对于幂的恒等式成立,例如若 α {displaystyle alpha } 是一非负整数 n {displaystyle n} ,则所有 k > n {displaystyle k>n} 的项为零,此无穷级数变成有限项的和,还原为二项式公式,但对于 α {displaystyle alpha } 的其他值,包括负数和有理数,此级数为无穷级数。帕斯卡法则是一重要的递归等式:( n k ) + ( n k + 1 ) = ( n + 1 k + 1 ) , {displaystyle {n choose k}+{n choose k+1}={n+1 choose k+1},}(3)此式可以用于数学归纳法,以证明 ( n k ) {displaystyle {tbinom {n}{k}}} 对于所有 n {displaystyle n} 和 k {displaystyle k} 均为自然数(等同于证明 k ! {displaystyle k!} 为所有 k {displaystyle k} 个连续整数之积的因数),此特性并不易从公式(1)中得出。帕斯卡法则建构出帕斯卡三角形:第 n {displaystyle n} 横行列出 ( n k ) {displaystyle {tbinom {n}{k}}} 的 k = 0 , … , n {displaystyle k=0,ldots ,n} 项,其建构方法为在外边填上1,然后将上一行中每两个相邻数相加的和填在其下,此方法可快速地计算二项式系数而不涉及乘法或分数,例如从第5横行可马上得出在斜线上相邻项的差就是上一斜线上的数值,此乃上述递归等式(3)的延伸意义。二项式系数是组合数学中的重要课题,因其可用于众多常见的点算问题中,例如就任就非负整数 k {displaystyle k} , ( t k ) {displaystyle scriptstyle {binom {t}{k}}} 可表达为一多项式除以 k ! {displaystyle k!} :此为带有理数系数,变量是 t {displaystyle t} 的多项式,可对任意实数或复数 t {displaystyle t} 运算以得出二项式系数,此“广义二项式系数”见于牛顿广义二项式定理。就任意 k {displaystyle k} ,多项式 ( t k ) {displaystyle {tbinom {t}{k}}} 可看成是惟一的 k {displaystyle k} 次多项式 p ( t ) {displaystyle p(t)} 满足 p ( 0 ) = p ( 1 ) = … = p ( k − 1 ) = 0 {displaystyle p(0)=p(1)=ldots =p(k-1)=0} 及 p ( k ) = 1 {displaystyle p(k)=1} .其系数可以第一类斯特灵数表示,即:( t k ) {displaystyle {tbinom {t}{k}}} 之导数可以对数微分计算:在任何包含Q的域中,最多 d {displaystyle d} 阶的多项式有惟一的线性组合 ∑ k = 0 d a k ( t k ) {displaystyle sum _{k=0}^{d}a_{k}{binom {t}{k}}} 。系数 a k {displaystyle a_{k}} 是数列 p ( 0 ) , p ( 1 ) , … , p ( k ) {displaystyle p(0),p(1),ldots ,p(k)} 的第k差分,亦即:a k = ∑ i = 0 k ( − 1 ) k − i ( k i ) p ( i ) . {displaystyle a_{k}=sum _{i=0}^{k}(-1)^{k-i}{binom {k}{i}}p(i).}(3.5)每一多项式 ( t k ) {displaystyle {tbinom {t}{k}}} 在整数参数时均是整数值(可在 k {displaystyle k} 上,用帕斯卡法则以归纳法证明)。故此,二项式系数多项式的整数线性组合亦为整数值。反之,(3.5)表达了任何整数值的多项式均是二项式系数多项式的整数线性组合。一般而言,对于一个特征0域 k {displaystyle k} 的任何子环 R {displaystyle R} ,在 K [ t ] {displaystyle K} 内的多项式在整数参数时之值均在 R {displaystyle R} 内当且仅当该多项式是一二项式系数多项式的 R {displaystyle R} -线性组合。整数值多项式 3 t ( 3 t + 1 ) 2 {displaystyle {frac {3t(3t+1)}{2}}} 可表达作:从 t = 1 , 2 , 3 {displaystyle t=1,2,3} 时 3 t ( 3 t + 1 ) 2 = 6 , 21 , 45 {displaystyle {frac {3t(3t+1)}{2}}=6,21,45} 用帕斯卡矩阵的逆可算出:这种二项式系数多项式结合朱世杰恒等式应用于等幂求和。阶乘公式能联系相邻的二项式系数,例如在 k {displaystyle k} 是正整数时,对任意 n {displaystyle n} 有:两个组合数相乘可作变换:本条目含有来自PlanetMath《Binomial Coefficient》的内容,版权遵守知识共享协议:署名-相同方式共享协议。本条目含有来自PlanetMath《Bounds for binomial coefficients》的内容,版权遵守知识共享协议:署名-相同方式共享协议。本条目含有来自PlanetMath《Proof that C(n,k) is an integer》的内容,版权遵守知识共享协议:署名-相同方式共享协议。本条目含有来自PlanetMath《Generalized binomial coefficients》的内容,版权遵守知识共享协议:署名-相同方式共享协议。

相关

  • 属(英语:genus,拉丁语:genus)是生物分类法中的一级,用于生物学中的生物和化石生物以及病毒的生物分类。在生物分类的层次结构中,属位于种之上和科之下。属名由拉丁词或希腊词或拉丁
  • 促甲状腺素促甲状腺激素,又称TSH(英语:Thyroid-stimulating hormone, TSH or Thyrotropin),是一个由垂体前叶当中的促甲状腺激素细胞所分泌的肽类激素。该激素用于调节甲状腺的内分泌功能.
  • 粘质沙雷氏菌黏质沙雷菌(学名:Serratia marcescens)又称灵杆菌,属于耶尔森菌科(英语:Yersiniaceae)沙雷菌属(英语:Serratia),是一种革兰氏阴性、兼性厌氧性杆菌,亦是一种条件致病菌,于1819年在意大利
  • β-内酰胺酶结构 / ECODβ-内酰胺酶(β-lactamases),又称为盘尼西林酶(Penicillinase)、头孢菌素酶(Cephalosporinase),是一类由某些细菌生成来提供多重抗药性,对抗β-内酰胺类抗生素(比如青霉素
  • 跖疣跖疣(verruca plantaris)是发生在足底部的寻常疣,是一种发生在足跟、跖(脚趾hi)骨头或跖(脚趾)间、脚掌的赘生物。西方医学称为跖疣,还有多种如“足疣”“刺瘊”的民间说法。是由人
  • 狩猎旅行狩猎旅行(safari,发音为/səˈfɑri/)。指的是在非洲大陆移动,进行狩猎或观赏野生动物的一种海外旅行方式。本词于19世纪晚期始出现于英语。safari于斯瓦希里语内为旅行之意,字源
  • 认知革命认知革命为一场始于20世纪50年代的知识运动,对思维及其过程进行跨学科的研究。后来被统称为认知科学。相互交流的相关领域有心理学、人类学、语言学。认知革命使用了当时新兴
  • CBa有机钡化学是研究碳-钡键的化合物的化学分支。有机钡化合物的反应活性比有机钙和有机锶的要大,但是稳定性比它们小。金属钡和卤代烃反应,可以得到RBaX,在反应中通常会先加入碘
  • 碳化硼碳化硼(化学式B4C)是一种极硬的陶瓷材料,用于坦克车的装甲、避弹衣和很多工业应用品中。它的摩氏硬度为9.3,并是继金刚石、立方氮化硼、富勒烯化合物和钻石整体纤管后的第五种已
  • 伴性遗传伴性遗传即遗传基因位于性染色体上的遗传现象。男性个体的X染色体一定是来源他的母亲,而他本人又一定是将其传给女儿,不会传给他的儿子;然而,女性个体的两条X染色体分别来源于她