首页 >
浓度梯度
✍ dations ◷ 2025-11-22 23:59:27 #浓度梯度
分子扩散(英语:molecular diffusion),通常简称扩散,是任何粒子(气体或液体)于绝对零度以上之环境下的热力学运动。本行为的速率是温度、流体黏度以及粒子大小(质量)的函数。扩散解释高浓度与低浓度之间存在分子净通量的原因。一旦浓度相等,分子虽持续运动,但由于浓度梯度已不复存在,分子遂停止扩散,改由自扩散主导分子的随机运动。扩散的结局是材料逐渐混合,使分子分布达成均匀。由于分子依然持续运动,但平衡也已经建立,因此分子扩散的最终状态被称为“动态平衡”。在具有均匀温度的相态中,因不受外部合力影响,扩散过程最终将达到完全混合。今考虑两个等温且有能力交换粒子的系统,S1与S2。如果系统势能有发生交换;例如μ1>μ2(μ为化学势),则系统S1至系统S2将有能量流产生,因为自然倾向降低能量并使熵值极大化。分子扩散一般都以菲克定律作为其数学描述。扩散是许多物理、化学及生物学科重要的基础。一些应用扩散的例子如下:扩散是输送现象的一部分,是一种较缓慢的质传方式。于细胞生物学中,扩散是细胞间传送必要物质(如氨基酸)的主要方式。溶剂(如水)在半透膜上的扩散行为则被称为渗透。物质于静止流体或跨越稳流流体之流线的输送方式为分子扩散。两相邻容器以隔墙隔开,并各自装有两假想之气体A与B,于容器中随意运动着。倘若隔墙被移除,部分气体A将移往原来被气体B占据的区域。相反地,B分子也将移往原来被纯A分子占据的区域。最终,两种分子达成完全混合。在此之前,A、B之浓度皆随着扩散轴向(X)逐渐变化,可以数学表示为-dCA/dx,其中CA是A的浓度。数学式前方的负号代表A浓度随着距离x的增加而减少。同样地,B浓度的变化则为-dCB/dx。分子A的扩散速率NA与浓度梯度和分子A于x方向上的平均速率相关,而这个关系得以菲克定律描述:
相关
- 粪口传播粪口路径(也称为口腔-粪便路径或者口粪路径),是一种疾病传播(英语:Transmission (medicine))途径。具体指的是,病原体由一个宿主的粪便中被引入另一个宿主的口腔中的传播方式。在一
- 毒蝇鹅膏菌毒蝇伞(学名:Amanita muscaria)又称毒蝇鹅膏菌,为一种含神经性毒害的担子菌门真菌,分类上为鹅膏菌科鹅膏菌属的物种。毒蝇伞的生长环境遍及北半球温带和极地地区,且也无意间拓展到
- 尿道球腺尿道球腺(英语:bulbourethral gland),又译考伯氏腺(Cowper gland),是三个附性腺中最小的腺体。位于会阴深横肌肌束内的一对黄豆大小、深色的腺体。每个腺体有一个细长的开口于尿道
- 武装冲突武装冲突,指因为争执、对立而发生的军事冲突。国家之间很多矛盾,都是以各种借口先挑起武装冲突,之后再以战争的方式来解决;民族之间或政治集团之间的武装冲突,一般容易引发内战,战
- 健保医疗保险或健康保险(Medical insurance),简称医保、健保,是常见的保险之一,主要为投保人应付无法预测的医疗服务需求及财务风险。广义的医疗保险也称健康保险,它不仅补偿由于疾病
- 自私的基因《自私的基因》(英语:The Selfish Gene)是英国演化生物学家理查德·道金斯于1976年出版的书,主要关于演化,其理论构筑于乔治·威廉斯(George C. Williams)的书《适应与自然选择》(Ad
- ω-3 脂肪酸ω−3脂肪酸(Omega-3 fatty acids)又称n−3脂肪酸,是一类不饱和脂肪酸,其中最重要的3种为:ALA(存在于植物中的油),EPA和DHA(这二种发现存在于海洋动植物油中)。从脂肪酸分子中距离羧基
- 哈德逊河哈德逊河(英语:Hudson River,又译赫逊河)是美国纽约州的大河,长507公里,发源于纽约上州阿第伦达克山脉,上游分出莫华克河,西接伊利运河(可达五大湖),流经哈德逊河谷后汇入纽约港,是纽约
- 世界自然保护联盟红色名录国际自然保护联盟濒危物种红色名录(或称IUCN红色名录,简称红皮书)于1963年开始编制,是全球动植物物种保护现状最全面的名录。此名录由国际自然保护联盟编制及维护。IUCN红色名录
- 龟头包皮炎龟头包皮炎是一种同时发生在龟头和包皮上的炎症,常见于包茎的人类小儿身上,但狗、绵羊和牛也有患此病的可能性。
