量子闸

✍ dations ◷ 2025-01-23 05:01:16 #量子闸
在量子计算和特别是量子线路的计算模型里面,一个量子门(或量子逻辑门)是一个基本的,操作一个小数量量子比特的量子线路。它是量子线路的基础,就像传统逻辑门跟一般数字线路之间的关系。与多数传统逻辑门不同,量子逻辑门是可逆的。然而,传统的计算可以只使用可逆的门表示。举例来说,可逆的Toffoli门可以实做所有的布尔函数。这个门有一个直接等同的量子门,也因此代表量子线路可以模拟所有传统线路的操作。量子逻辑门使用酉矩阵表示。就像常见的逻辑门一般是针对一个或两个比特进行操作,常见的量子门也是针对一个或两个量子比特进行操作。这也代表这一些量子门可以以2 × 2或者4 × 4的酉矩阵表示。量子门常使用矩阵表示,操作K个量子比特的门可以用2k × 2k的酉矩阵表示。一个门输入跟输出的量子比特数量必须要相等。量子门的操作可以用代表量子门的矩阵与代表量子比特状态的向量作相乘来表示。在下文中,单个量子比特的矢量表示为:而两个量子比特的矢量表示为:其中 | a b ⟩ {displaystyle |abrangle } 是代表第一个量子比特处于 | a ⟩ {displaystyle |arangle } 态,第二个量子比特处于 | b ⟩ {displaystyle |brangle } 态所构成的(两个量子比特的)量子态的基矢。阿达马门是只对一个一个量子比特进行操作的门。这个门将基本状态 | 0 ⟩ {displaystyle |0rangle } 变成 | 0 ⟩ + | 1 ⟩ 2 {displaystyle {frac {|0rangle +|1rangle }{sqrt {2}}}} ,并且将 | 1 ⟩ {displaystyle |1rangle } 变成 | 0 ⟩ − | 1 ⟩ 2 {displaystyle {frac {|0rangle -|1rangle }{sqrt {2}}}} 。这个门可以以阿达马矩阵表示:因为矩阵的每一列正交, H H ∗ = I {displaystyle HH^{*}=I} ,其中I表示单位矩阵,因此H是一个酉矩阵。泡利-X门操作一个量子比特。这个门相当于经典的逻辑非门。它将 | 0 ⟩ {displaystyle |0rangle } 换成 | 1 ⟩ {displaystyle |1rangle } 并且 | 1 ⟩ {displaystyle |1rangle } 换成 | 0 ⟩ {displaystyle |0rangle } 。这个门可以以一个泡利X矩阵表示:泡利-Y门操作单一个量子比特。这个门可以以一个泡利Y矩阵表示:泡利-Z门操作单一个量子比特。这个门保留基本状态 | 0 ⟩ {displaystyle |0rangle } 不变并且将 | 1 ⟩ {displaystyle |1rangle } 换成 − | 1 ⟩ {displaystyle -|1rangle } 。这个门可以以一个泡利Z矩阵表示:这是一系列操作单一量子比特的门,它保留基本状态 | 0 ⟩ {displaystyle |0rangle } 并且将 | 1 ⟩ {displaystyle |1rangle } 换成 e i θ | 1 ⟩ {displaystyle e^{itheta }|1rangle } 。这里的 θ {displaystyle theta } 代表相位位移。一些常见的例子像是 π 8 {displaystyle {frac {pi }{8}}} 门的 θ = π 4 {displaystyle theta ={frac {pi }{4}}} ,相位门的的 θ {displaystyle theta } 则等于 π 2 {displaystyle {frac {pi }{2}}} 而泡利-Z门的 θ = π {displaystyle theta =pi } 。互换门操作两个量子比特,可以用以下这个矩阵表示:受控门操作两个以上的量子比特,其中一个或多个量子比特视为某一些操作的控制比特。举例来说,受控非门(CNOT)操作两个量子比特,第二个量子比特只有在第一个量子比特为 | 1 ⟩ {displaystyle |1rangle } 的时候进行NOT操作,否则就保持不变。这个门可以以以下的矩阵表示:更普遍地说,如果U是一个操作单一量子比特的门,以以下这个矩阵表示:则受控-U门就是操作两个量子比特的量子门,以第一个量子比特作为控制。操作基本状态如下:受控-U门可以以矩阵代表如下:Toffoli门是一个操作三个量子比特的,对传统运算是完备的门。量子的Toffoli门是类同的门,以三个量子比特定义。如果前两个量子比特是 | 1 ⟩ {displaystyle |1rangle } ,则对第三个量子比特进行泡利-X运算,反之则不做操作。这是一个受控门的范例。既然这个门是一个传统逻辑门的量子模拟,因此它可以用一个真值表来完整表示如下:也可以将这个门以像是 | a , b , c ⟩ {displaystyle |a,b,crangle } to | a , b , c ⊕ a b ⟩ {displaystyle |a,b,coplus abrangle } 的操作形容。较不正式地说,一个万能量子门的集合,是一个任何量子线路均可以用这一些门实做出来的集合。也就是说,任何其他的单位操作均可以从这个集合组合出一个有限长度的序列来表示。技术上来说,因为可能的量子门数目是不可数的,而从有限大的集合取出的有限长度的序列则是可数的,所以不可能达成。为了解决这个问题,我们只要求这一个有限大小的集合可以组合出近似任何量子运算的序列。Solovay–Kitaev theorem保证这一件事情可以有效达成。一个简单的,操作两个量子比特的门,的万能量子门集合是一个阿达马门( H {displaystyle H} ),一个相位偏移门 R ( π / 4 ) {displaystyle R(pi /4)} ,和一个受控非门.只有单一个量子门的万能量子门集合可以用一个操作三个量子比特的Deutsch门 D ( θ ) {displaystyle D(theta )} 建构出来,Deutsch门它的操作如下:| a , b , c ⟩ ↦ { i cos ⁡ ( θ ) | a , b , c ⟩ + sin ⁡ ( θ ) | a , b , 1 − c ⟩ for  a = b = 1 | a , b , c ⟩ otherwise {displaystyle |a,b,crangle mapsto {begin{cases}icos(theta )|a,b,crangle +sin(theta )|a,b,1-crangle &{mbox{for }}a=b=1\|a,b,crangle &{mbox{otherwise}}end{cases}}}在传统逻辑线路里面的万用算子Toffoli门可以被简化成一个Deutsch门, D ( π 2 ) {displaystyle D({begin{matrix}{frac {pi }{2}}end{matrix}})} ,因此代表着所有传统逻辑线路的操作均可以由量子电脑模拟。现有量子门的记号是Barenco et al.以费曼所提出的记号为基础发明的。

相关

  • 维和行动这是一个有关于联合国自1945年成立以来的历次维持和平行动(简称维和行动)的详细情况列表。该列表详细叙述了历次维持和平行动的时间、行动名称、维持和平行动所在的国家或地区
  • 真骨附类真骨下纲(学名:Teleostei)或真骨部是辐鳍鱼纲的演化支之一。此一多样的类群诞生于三叠纪,有两万多个现存物种,分布在40个目之中。辐鳍鱼纲的另外两个演化支(全骨下纲和软质亚纲)是
  • 条带状铁矿条状铁层(Banded Iron Formation,简称BIF),又名带状铁矿层、条带状铁矿、带状铁矿或缟状铁矿,是一类岩石的名称,它包含了铁的氧化物、硫化物、碳酸盐类矿物以及燧石,并以条状互层的
  • 新太古代新太古代,是太古宙的最后一个代,前一个是中太古代,后一个是元古宙的古元古代,新太古代的年代大约在28~25亿年之间。新太古代早期出现了地球形成以来的第一次冰河期,并延续3亿年,也
  • 一部,是为汉字索引中的部首之一,康熙字典214个部首中的第一个(一划的则为第一个)。就繁体和简体中文中,一部归于一划部首。一部只以上方、下方为部字。且无其他部首可用者将部首
  • 航天史自康斯坦丁·齐奥尔科夫斯基及罗伯特·戈达德在航天的理论方面给实际方面作出突破后,航天便在20世纪开始成为人类对成就的一项指标。苏联在战后太空竞赛中扮演领导者的角色,成
  • 文化例外文化例外(台湾称作文化免议)是一种为了保护本国的文化不被其他文化侵袭而制定的一种政策。法国最早提出文化例外,许多国家采用文化例外原则虽然起到了一定的积极效果,但是总体上
  • 三十六计《三十六计》,或称三十六策,是一部兵法书,记载了三十六条兵法。“三十六计”一词最早可以追溯到《南齐书·王敬则传》提到的“三十六策”:“敬则曰:‘檀公三十六策,走是上计。汝父
  • RecBCDRecBCD是大肠杆菌体内用来起始DNA同源重组的蛋白质。由3个不同的亚基所组成,分别是RecB、RecC与RecD(这些名称也可用来表示转录出这些蛋白质的基因)。其中RecB与RecD是解旋酶。
  • 喙头目喙头目(学名:Rhynchocephalia),也称喙头蜥目,是形似蜥蜴的蜥形纲动物的一个目。今仅存楔齿蜥科下楔齿蜥属2种。1831年,喙头蜥的头骨被送至大英博物馆,因被当成一种蜥蜴,而使整个属被