超几何函数

✍ dations ◷ 2025-09-07 03:00:26 #阶乘与二项式主题,超几何函数,常微分方程,级数

在数学中,高斯超几何函数或普通超几何函数2F1(a,b;c;z)是一个用超几何级数定义的函数,很多特殊函数都是它的特例或极限。所有具有三个正则奇点(英语:Regular singular point)的二阶线性常微分方程的解都可以用超几何函数表示。

c {\displaystyle c} | < 1,超几何函数可用如下幂级数定义

2 F 1 ( a , b ; c ; z ) = n = 0 a ( n ) b ( n ) c ( n ) z n n ! {\displaystyle \,_{2}F_{1}(a,b;c;z)=\sum _{n=0}^{\infty }{a^{(n)}b^{(n)} \over c^{(n)}}\,{z^{n} \over n!}} 或是或负整数时级数只有有限项,另有避免这种情况出现的正则超几何函数。

对于满足|| ≥ 1 的复数,超几何函数可以通过将上述在单位圆内定义的函数沿着避开支点和的任意路径做解析延拓来得到。具体的公式可以表示为

很多普通的数学函数可以用超几何函数或它的极限表示出来,一些典型的例子如下:

合流超几何函数(Kummer函数)可以用超几何函数的极限表示如下

因此,所有合流超几何函数的特例,例如贝塞尔函数都可以表示成超几何函数的极限。

勒让德函数是有3个正则奇点的二阶线性常微分方程的解,可以用以不同的形式用超几何函数表示,例如

2 F 1 ( a , 1 a ; c ; z ) = Γ ( c ) z 1 c 2 ( 1 z ) c 1 2 P a 1 c ( 1 2 z ) {\displaystyle {}_{2}F_{1}(a,1-a;c;z)=\Gamma (c)z^{\tfrac {1-c}{2}}(1-z)^{\tfrac {c-1}{2}}P_{-a}^{1-c}(1-2z)} (α,β)
及其特殊情形勒让德多项式, 车比雪夫多项式, Gegenbauer多项式都能用超几何函数表示

2 F 1 ( n , α + 1 + β + n ; α + 1 ; x ) = n ! ( α + 1 ) n P n ( α , β ) ( 1 2 x ) {\displaystyle {}_{2}F_{1}(-n,\alpha +1+\beta +n;\alpha +1;x)={\frac {n!}{(\alpha +1)_{n}}}P_{n}^{(\alpha ,\beta )}(1-2x)} , , 是1, 1/2, 1/3, ... 或 0 的超几何函数之比的反函数。例如,若

是的椭圆模函数.

不完整的beta函数 (,) 表示成

完整的椭圆积分 和 如下给出

超几何函数满足的微分方程称为超几何方程,其形式为(参见广义超几何函数)

展开后,得

它有三个正则奇点:0, 1, ∞.

超几何方程的指标方程(英语:Frobenius method)为

它的两个指标 ρ 是 0 和 1-c。

c不是整数时,超几何方程在 0 附近的两个线性无关的正则特解为:

c 为 1 时,方程只有一个正则解。当 c 为其余整数时,另一个线性无关的正则特解涉及对数项。

事实上,当 c 为整数时,另一个线性无关的特解总可以选取为 Meijer G-函数:

只需作代换 t=1-z,方程变为:

a+b-c 不是整数时,两个线性无关的正则特解为:

a-b 不是整数时,两个线性无关的正则特解为:

在讨论超几何方程的解的连接关系的时候,采用另外一套参数会更加方便。这组参数是根据方程在三个正则奇点处的指标之差来定义的。

参数 α,β,γ 称为李代数参数。

运用李代数参数,超几何方程在三个正则奇点处的正则解可以分别表示为:

从上面的表达式可见,李代数参数比起通常用的参数 a,b,c 的优势在于能够体现不同区域的解之间的对称性。

引入记号:

则超几何方程在不同区域的解的连接关系可以表示为:

分别对比两组式子最后一个等号之后的部分,可以看出每组的两个式子之间的对称性。

完整的连接关系表称为 Kummer 表,上面四式是 Kummer 表的一部分。

式中的 Β 是beta函数。

可以证明等号右边的表达式是超几何方程的解。再考虑这个解在 z=0 附近的性质,可以确定它的具体形式。

上式中的第二、三个等号可以通过直接展开大括号内的多项式乘积得到。上式两边分别对 t 从 1 到无穷大进行积分,等号右边为 0,于是我们证明了上面的积分表达式的确是超几何方程的解。

另一方面,利用二项式定理,积分表达式等号右边的部分可以按 z 展开成幂级数,故可知等号右边应取 C 2F1(a,b,c;z) 的形式(因为另一个线性无关的特解无法展开成幂级数),其中 C 为待定的常数。

对比积分表达式在 z=0 处的值与 Β 函数的定义,即可确定常数 C。

Pfaff 变换将正则奇点 1 和 ∞ 交换(也就是将李代数参数中的 β 与 μ 对换):

a,b 的对称性自然有:

Pfaff 变换可以根据超几何方程得到。事实上,令

w(u) 满足的超几何方程知等号右边为 0,再考虑函数 (1-z)-bw(z) 在 z=0 附近的性质即可得到 Pfaff 变换的公式。

Pfaff 变换可以导出 Euler 变换,它将李代数参数 β 变成 -β:

Pfaff 变换和 Euler 变换都是分式线性变换的例子,这得名于等式两边的超几何函数的宗量的联系,参见莫比乌斯变换。

将上面提到的四个连接关系与 Pfaff 变换及 Euler 变换组合起来,就得到完整的 Kummer 表。

给定一组李代数参数(α,β,μ),(±α,±β,±μ) 及其轮换对应着 24 个不同但彼此关联的超几何函数(Fα,β,μ 恒等于 Fα,β,),利用前面提到的四个连接关系和 Pfaff 变换,它们中的任意一个可以通过任意另外两个表出。

例如 Euler 变换可以表示为:

下面是一个二次变换的例子:

二次变换得名于等号两边超几何函数宗量的联系(一个二次函数和一个莫比乌斯变换的组合)。

仿照上面 Pfaff 变换的证明,有:

仿照上面关于 Pfaff 变换的讨论,可得二次变换的公式。

运用李代数参数,一般的二次变换可以表示为

其中 f(z),g(z) 是 z 的函数, P(z) 表示 z 要满足的约束。

下表给出了一些二次变换。

另外还有:

将它们与 Kummer 表组合起来,就得到所有的含有两个独立参变量的二次变换关系式。例如上面的例子可以通过组合第一行中的变换与 Pfaff 变换得到。

另外还有一些只含有一个独立参变量的二次变换关系式。

若一组李代数参数满足下列条件:有两个是 ±1/3,或者三个参数的绝对值相等,则有一个三次变换的公式将它与另一个超几何函数联系起来。

另外有一些 4 次和 6 次变换的公式。其它次数的变换公式只有当参数取特定有理数值时存在。参见Goursat(1881)。

这称为高斯原理(Gauss's theorem),可以由超几何函数的积分表示得到。范德蒙恒等式是它的特殊情形。

这可以通过组合上表中的第二个二次变换和 Pfaff 变换,并利用 z=1 时的特殊值得到。

上面两式分别被称为高斯第二求和原理与 Balley 原理。它们都可以通过组合第三个二次变换和 Pfaff 变换,并利用 z=1 时的特殊值得到。

相关

  • 干扰素结构 / ECOD1b5l :24-187 1ovi :24-185 2hie :24-186 1itf :24-186 1au1B:22-187 2hif :24-182结构 / ECOD结构 / ECOD干扰素(英语:Interferon; IFNs; /ˌɪn
  • 妥布霉素Neonates < 1200 g: 11 hrs; > 1200 g 2-9 hrs Adults: 2-3 hours; longer with impaired renal function妥布霉素(Tobramycin)也叫托普霉素,是一种氨基糖苷类抗生素,能用于治
  • 主管高阶管理人员、高级管理人员、执行管理人员、行政管理人员和管理阶层等皆指企业、组织内的高级经理人或高级管理团队。一般而言,他们负起公司例行公务的种种责任,也拥有来自董
  • 异戊二烯异戊二烯,IUPAC名称2-甲基-1,3-丁二烯,是一种共轭二烯烃,分子式为C5H8。对于天然产物萜类化合物,就是以分子中含有的异戊二烯单元个数分类的。由一个异戊二烯单元组成的萜称为半
  • 生铁生铁是碳的质量分数超过2%,并且其他元素的含量不超过表1中所规定的极限值的铁-碳合金。a 含量比该极限值高的材料是铁合金。b 凡规定有最低含量或者含量超过表2注b中段落4)所
  • 首字母缩略词首字母缩略字(英语:Acronym)是将相关词句的第一个字母缩写而组合成一个新字。 “首字母缩略字”又称为“头字语”。 而这个新字的发音则是依据这个新字书写的方式。例如“英语:l
  • 英国医学总会医学总会(英语:General Medical Council,缩写作 GMC)是英国一个收费的注册慈善团体,根据《1858年医学法令》成立,拥有法定义务管有英国执业医生的登记名册。医学总会也负责管制英
  • 安纳布尔纳峰安纳布尔纳峰(英语:Annapurna,梵语、尼泊尔语、尼瓦尔语:अन्नपूर्ण)位于喜马拉雅山脉、尼泊尔中北部境内,海拔8,091米,是世界第十高峰。安纳布尔纳山峦长55公里(34英里),包括
  • Saccharomycetales见内文酵母菌目(学名:Saccharomycetales),或只作酵母目,是真菌界子囊菌门酵母菌纲之下唯一的一个目。本目现时由13个科组成:
  • 益达胺益达胺(Imidacloprid)又名吡虫啉,是新一代类尼古丁超高效杀虫剂,纯品呈无色无味的晶体。主要破坏昆虫的神经系统功能。对昆虫具有广谱、高效、害虫不易产生抗性,对人、哺乳动物、