超几何函数

✍ dations ◷ 2025-04-18 19:07:18 #阶乘与二项式主题,超几何函数,常微分方程,级数

在数学中,高斯超几何函数或普通超几何函数2F1(a,b;c;z)是一个用超几何级数定义的函数,很多特殊函数都是它的特例或极限。所有具有三个正则奇点(英语:Regular singular point)的二阶线性常微分方程的解都可以用超几何函数表示。

c {\displaystyle c} | < 1,超几何函数可用如下幂级数定义

2 F 1 ( a , b ; c ; z ) = n = 0 a ( n ) b ( n ) c ( n ) z n n ! {\displaystyle \,_{2}F_{1}(a,b;c;z)=\sum _{n=0}^{\infty }{a^{(n)}b^{(n)} \over c^{(n)}}\,{z^{n} \over n!}} 或是或负整数时级数只有有限项,另有避免这种情况出现的正则超几何函数。

对于满足|| ≥ 1 的复数,超几何函数可以通过将上述在单位圆内定义的函数沿着避开支点和的任意路径做解析延拓来得到。具体的公式可以表示为

很多普通的数学函数可以用超几何函数或它的极限表示出来,一些典型的例子如下:

合流超几何函数(Kummer函数)可以用超几何函数的极限表示如下

因此,所有合流超几何函数的特例,例如贝塞尔函数都可以表示成超几何函数的极限。

勒让德函数是有3个正则奇点的二阶线性常微分方程的解,可以用以不同的形式用超几何函数表示,例如

2 F 1 ( a , 1 a ; c ; z ) = Γ ( c ) z 1 c 2 ( 1 z ) c 1 2 P a 1 c ( 1 2 z ) {\displaystyle {}_{2}F_{1}(a,1-a;c;z)=\Gamma (c)z^{\tfrac {1-c}{2}}(1-z)^{\tfrac {c-1}{2}}P_{-a}^{1-c}(1-2z)} (α,β)
及其特殊情形勒让德多项式, 车比雪夫多项式, Gegenbauer多项式都能用超几何函数表示

2 F 1 ( n , α + 1 + β + n ; α + 1 ; x ) = n ! ( α + 1 ) n P n ( α , β ) ( 1 2 x ) {\displaystyle {}_{2}F_{1}(-n,\alpha +1+\beta +n;\alpha +1;x)={\frac {n!}{(\alpha +1)_{n}}}P_{n}^{(\alpha ,\beta )}(1-2x)} , , 是1, 1/2, 1/3, ... 或 0 的超几何函数之比的反函数。例如,若

是的椭圆模函数.

不完整的beta函数 (,) 表示成

完整的椭圆积分 和 如下给出

超几何函数满足的微分方程称为超几何方程,其形式为(参见广义超几何函数)

展开后,得

它有三个正则奇点:0, 1, ∞.

超几何方程的指标方程(英语:Frobenius method)为

它的两个指标 ρ 是 0 和 1-c。

c不是整数时,超几何方程在 0 附近的两个线性无关的正则特解为:

c 为 1 时,方程只有一个正则解。当 c 为其余整数时,另一个线性无关的正则特解涉及对数项。

事实上,当 c 为整数时,另一个线性无关的特解总可以选取为 Meijer G-函数:

只需作代换 t=1-z,方程变为:

a+b-c 不是整数时,两个线性无关的正则特解为:

a-b 不是整数时,两个线性无关的正则特解为:

在讨论超几何方程的解的连接关系的时候,采用另外一套参数会更加方便。这组参数是根据方程在三个正则奇点处的指标之差来定义的。

参数 α,β,γ 称为李代数参数。

运用李代数参数,超几何方程在三个正则奇点处的正则解可以分别表示为:

从上面的表达式可见,李代数参数比起通常用的参数 a,b,c 的优势在于能够体现不同区域的解之间的对称性。

引入记号:

则超几何方程在不同区域的解的连接关系可以表示为:

分别对比两组式子最后一个等号之后的部分,可以看出每组的两个式子之间的对称性。

完整的连接关系表称为 Kummer 表,上面四式是 Kummer 表的一部分。

式中的 Β 是beta函数。

可以证明等号右边的表达式是超几何方程的解。再考虑这个解在 z=0 附近的性质,可以确定它的具体形式。

上式中的第二、三个等号可以通过直接展开大括号内的多项式乘积得到。上式两边分别对 t 从 1 到无穷大进行积分,等号右边为 0,于是我们证明了上面的积分表达式的确是超几何方程的解。

另一方面,利用二项式定理,积分表达式等号右边的部分可以按 z 展开成幂级数,故可知等号右边应取 C 2F1(a,b,c;z) 的形式(因为另一个线性无关的特解无法展开成幂级数),其中 C 为待定的常数。

对比积分表达式在 z=0 处的值与 Β 函数的定义,即可确定常数 C。

Pfaff 变换将正则奇点 1 和 ∞ 交换(也就是将李代数参数中的 β 与 μ 对换):

a,b 的对称性自然有:

Pfaff 变换可以根据超几何方程得到。事实上,令

w(u) 满足的超几何方程知等号右边为 0,再考虑函数 (1-z)-bw(z) 在 z=0 附近的性质即可得到 Pfaff 变换的公式。

Pfaff 变换可以导出 Euler 变换,它将李代数参数 β 变成 -β:

Pfaff 变换和 Euler 变换都是分式线性变换的例子,这得名于等式两边的超几何函数的宗量的联系,参见莫比乌斯变换。

将上面提到的四个连接关系与 Pfaff 变换及 Euler 变换组合起来,就得到完整的 Kummer 表。

给定一组李代数参数(α,β,μ),(±α,±β,±μ) 及其轮换对应着 24 个不同但彼此关联的超几何函数(Fα,β,μ 恒等于 Fα,β,),利用前面提到的四个连接关系和 Pfaff 变换,它们中的任意一个可以通过任意另外两个表出。

例如 Euler 变换可以表示为:

下面是一个二次变换的例子:

二次变换得名于等号两边超几何函数宗量的联系(一个二次函数和一个莫比乌斯变换的组合)。

仿照上面 Pfaff 变换的证明,有:

仿照上面关于 Pfaff 变换的讨论,可得二次变换的公式。

运用李代数参数,一般的二次变换可以表示为

其中 f(z),g(z) 是 z 的函数, P(z) 表示 z 要满足的约束。

下表给出了一些二次变换。

另外还有:

将它们与 Kummer 表组合起来,就得到所有的含有两个独立参变量的二次变换关系式。例如上面的例子可以通过组合第一行中的变换与 Pfaff 变换得到。

另外还有一些只含有一个独立参变量的二次变换关系式。

若一组李代数参数满足下列条件:有两个是 ±1/3,或者三个参数的绝对值相等,则有一个三次变换的公式将它与另一个超几何函数联系起来。

另外有一些 4 次和 6 次变换的公式。其它次数的变换公式只有当参数取特定有理数值时存在。参见Goursat(1881)。

这称为高斯原理(Gauss's theorem),可以由超几何函数的积分表示得到。范德蒙恒等式是它的特殊情形。

这可以通过组合上表中的第二个二次变换和 Pfaff 变换,并利用 z=1 时的特殊值得到。

上面两式分别被称为高斯第二求和原理与 Balley 原理。它们都可以通过组合第三个二次变换和 Pfaff 变换,并利用 z=1 时的特殊值得到。

相关

  • 基本传染数基本传染数(Basic reproduction number)是在流行病学上,指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染到某种传染病的人,会把疾病传染给其他多少个人的平均数。基本
  • 甲基汞甲基汞是化学式为(CH3)Hg+的有机金属阳离子。对环境有生物累积毒害。无机汞离子在微生物的作用下,会转化为甲基汞,因此它很容易在河流和湖泊中发现,被湖中的鱼虾吞食后会累积毒
  • 全印穆斯林联盟全印穆斯林联盟(印地语:अखिल भारतीय मुस्लिम लीग、英语:All-India Muslim League),通称穆斯林联盟,为英属印度时期成立的政党,创建于1906年,其宗旨是在印度次大
  • 利扎曲坦利扎曲坦 (英语:Rizatriptan,或译为利扎曲普坦)是一种曲坦类5-HT1激动剂,由默克药厂为治疗偏头痛而开发,商品名Maxalt。利扎曲坦于1998年6月39号通过美国食品药品监督管理局(FDA)审
  • 解深密经解深密经(梵语:saṃdhi-nirmocana-sūtra;藏语:.mw-parser-output .uchen{font-family:"Qomolangma-Dunhuang","Qomolangma-Uchen Sarchen","Qomolangma-Uchen Sarchung","Qomol
  • 电信运营商电信公司,又称电讯公司,是电信服务业,包括通信服务公司。电信公司是资金集中式(Capital intensity)的服务业,最大的资本投资是实质的电话网络及电信设备。由于电信是一个国家、地
  • 德布罗意波长在物理学里,物质波(即德布罗意波)系指物质具有波动性的现象。由于物质具有粒子性与波动性,物质具有波粒二象性。路易·德布罗意于1923年在博士论文《量子理论研究》里提出,粒子波
  • 路易氏剂2-氯乙烯基二氯胂(英语:2-Chloroethenyldichloroarsine),又名路易氏剂(英语:Lewisite),由美国化学家W.L.Lewis(Winford Lee Lewis)于1918年春发明,是一种具有强烈皮肤糜烂毒性的有机砷
  • 镇守府镇守府是过去作为日本海军根据地、监管舰队大后方的机构,其前身为1871年(明治4年)兵部省内设立的海军提督府。各镇守府主要负责所辖海军区的防备,所属舰艇的指挥(领导)、补给、出
  • 隐藏式阴茎隐匿型阴茎一种病态阴茎。多见于肥胖体形的儿童,其特点为包茎,阴茎周围皮下脂肪很厚,阴茎皮肤发育不良,阴茎海绵体及尿道海绵体发育欠佳,阴茎体不能进入到阴茎皮肤及包皮腔内。因