双线性形式

✍ dations ◷ 2025-02-26 18:55:55 #双线性形式,抽象代数,线性代数,多重线性代数

在域 中,向量空间 的双线性形式指的是一个 × → 上的线性函数 , 满足:

都是线性的。这个定义也适用于的模,这时线性函数要改为模同态。

注意一个双线性形式是特别的双线性映射。

如果是n维向量空间,设 C = { e 1 , , e n } {\displaystyle C=\{e_{1},\ldots ,e_{n}\}} 的一组基。定义 n × n {\displaystyle n\times n} 使得 ( A i j ) = B ( e i , e j ) {\displaystyle (A_{ij})=B(e_{i},e_{j})} 和表示向量及时,双线性形式可表示为:

考虑另一组基 C = = S {\displaystyle C'={\begin{bmatrix}e'_{1}&\cdots &e'_{n}\end{bmatrix}}={\begin{bmatrix}e_{1}&\cdots &e_{n}\end{bmatrix}}S} 是一个可逆的 n × n {\displaystyle n\times n} 都定义了一对由射到它的对偶空间*的线性函数。定义 B 1 , B 2 : V V {\displaystyle B_{1},B_{2}\colon V\to V^{*}} 是有限维空间的话,和它的双对偶空间**是同构的,这时21 的转置映射(如果是无限维空间,2限制在在**的像下的部分是1 的转置映射)。 定义的转置映射为双线性形式:

如果 是有限维空间,12 的秩相等。如果他们的秩等于的维数的话,12 就是由到*的同构映射(显然1是同构当且仅当2 是同构),此时,是非退化的。实际上在有限维空间里,这常常作为非退化的定义:是非退化的当且仅当

双线性形式  : × → 是镜像对称的当且仅当:

当A是非奇异矩阵,即当是非退化时,根都是零子空间{0}。

设W是一个子空间,定义 W = { v | B ( v , w ) = 0   w W } {\displaystyle W^{\perp }=\{v|B(v,w)=0\ \forall w\in W\}} 是非退化时,映射 W W {\displaystyle W\rightarrow W^{\perp }} )-dim()。

可以证明,双线性形式是镜像对称的当且仅当它是以下两者之一:

每个交替形式都是斜对称(skew-symmetric)(或称反对称(antisymmetric))的,只要展开

当的特征不为2时,逆命题也是真的。斜对称的形式必定交替。然而,当char()=2时,斜对称就是对称,因此不全是交替的。

一个双线性形式是对称的(反对称的)当且仅当它对应的矩阵是对称的(反对称的)。一个双线性形式是交替的当且仅当它对应的矩阵是反对称的,且主对角线上都是零。(在的特征不为2时的情况下)

一个双线性形式是对称的当且仅当 B 1 , B 2 : V V {\displaystyle B_{1},B_{2}\colon V\to V^{*}} ) ≠ 2 时,一个双线性形式可以按成对称和反对称部分分解:

其中* 是 的转置映射。

这套理论有很大一部分可推广到双线性映射的情形:

此时仍有从 到 的对偶、及从 到 的对偶的映射。当 , 皆有限维,则只要其中之一是同构,另一个映射也是同构。在此情况下 称作完美配对。

由张量积的泛性质, V {\displaystyle V} 2* 的元素,而交代双线性形式则可想成二次外幂 Λ2* 的元素。

相关

  • 动物界è§å†…文动物是多细èƒçœŸæ ¸ç”Ÿå‘½ä½“中的一大类群,统称为动物界ã
  • 大卫像大卫像(英语:David)是文艺复兴时代米开朗基罗的杰作,于1501年至1504年雕成。雕像为白色大理石雕成的站立的男性裸体,高5.17米,重约6吨。用以表现圣经中的犹太英雄大卫王。原作目前
  • 勃来诺勃来诺(英语:Bolenol,INN,USAN,也被称为17α-乙基-19-去甲雄甾-5-烯-17β-醇,17α-ethyl-19-norandrost-5-en-17β-ol,乙雌异烯醇,ethylnorandrostenol)是一种同化类固醇(AAS)药物,其碳
  • 巴林中华民国与巴林关系是指中华民国与巴林王国之间的关系。两国无官方外交关系,但中华民国于巴林首都麦纳麦设立具大使馆性质的代表机构。仅列举部分名单:巴林:商业暨农业部长、运
  • 开海海禁(又称洋禁),是一种锁国政策,旨在禁止民间私自出海,有谓“尺板不得出海”,也限制外国商人前往本国通商。具体实施随着时间变迁而有张有弛,即“严禁”及“弛禁”之分。海禁目的是
  • 东方乐园东方乐园位于中国广州市白云山麓的大金钟水库旁,是以先进科技表现华夏文化的现代游乐城,也是国际游乐场协会吸收的第一个中国会员。东方乐园占地24万平方米,有双环过山车等50多
  • 苯二氮平苯二氮䓬类药物(拉丁语:Benzodiazepines,BZDs、䓬/zhuó/),又译苯二氮平,是一种精神药物,其核心化学结构是一个苯环和一个䓬环。第一种此类药物是氯氮䓬(利眠宁),由Leo Sternbach在195
  • DanweiDanwei(中文:单位)是一个于2002年上线的英文网站,由在华南非人金玉米创建。网站最初以博客形式向英语世界发布关于中文媒体及网络的原创文章以及翻译。现今Danwei还向客户提供包
  • 雪山无心菜雪山无心菜(学名:)是石竹科无心菜属的植物,为中国的特有植物。分布在中国大陆的云南等地,生长于海拔4,400米至4,650米的地区,一般生长在高山草甸有残雪的小谷地中,目前尚未由人工引
  • 马内尔马内尔(Maner),是印度比哈尔邦Patna县的一个城镇。总人口26912(2001年)。该地2001年总人口26912人,其中男性14270人,女性12642人;0—6岁人口5039人,其中男2622人,女2417人;识字率51.96%