分母

✍ dations ◷ 2024-11-05 20:38:21 #分母
N ⊆ Z ⊆ Q ⊆ R ⊆ C {displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数 R + {displaystyle mathbb {R} ^{+}} 自然数 N {displaystyle mathbb {N} } 正整数 Z + {displaystyle mathbb {Z} ^{+}} 小数 有限小数 无限小数 循环小数 有理数 Q {displaystyle mathbb {Q} } 代数数 A {displaystyle mathbb {A} } 实数 R {displaystyle mathbb {R} } 复数 C {displaystyle mathbb {C} } 高斯整数 Z [ i ] {displaystyle mathbb {Z} }负数 R − {displaystyle mathbb {R} ^{-}} 整数 Z {displaystyle mathbb {Z} } 负整数 Z − {displaystyle mathbb {Z} ^{-}} 分数 单位分数 二进分数 规矩数 无理数 超越数 虚数 I {displaystyle mathbb {I} } 二次无理数 艾森斯坦整数 Z [ ω ] {displaystyle mathbb {Z} }二元数 四元数 H {displaystyle mathbb {H} } 八元数 O {displaystyle mathbb {O} } 十六元数 S {displaystyle mathbb {S} } 超实数 ∗ R {displaystyle ^{*}mathbb {R} } 大实数 上超实数双曲复数 双复数 复四元数 共四元数(英语:Dual quaternion) 超复数 超数 超现实数素数 P {displaystyle mathbb {P} } 可计算数 基数 阿列夫数 同余 整数数列 公称值规矩数 可定义数 序数 超限数 '"`UNIQ--templatestyles-00000015-QINU`"' p进数 数学常数圆周率 π = 3.141592653 … {displaystyle pi =3.141592653dots } 自然对数的底 e = 2.718281828 … {displaystyle e=2.718281828dots } 虚数单位 i = − 1 {displaystyle i={sqrt {-1}}} 无穷大 ∞ {displaystyle infty }分数(fraction)是用分式(分数式)表达成 a b {displaystyle {frac {a}{b}}} 的数( a , b ∈ Z , b ≠ 0 {displaystyle a,bin Z,bneq 0} )。在上式之中, b {displaystyle b} 称为分母(Denominator)而 a {displaystyle a} 称为分子(Numerator),可视为某件事物平均分成 b {displaystyle b} 份中占 a {displaystyle a} 份,读作“ b {displaystyle b} 分之 a {displaystyle a} ”。中间的线称为分线或分数线。有时人们会用 a / b {displaystyle a/b} 来表示分数。分数有各种不同的用法与意义:这些概念在数学里都是相通的,只是在不同的使用场合中有其实际意义no分数如自然数般,跟从互联律、结合律、分配律和反除以零的规则。一个分数约分后或扩分后,其分数与原来之分数的值相等,称为等值分数。“约分”是将一个分数的分子和分母同除以一个比1大的整数(它们的公约数)。 约分后的分数和原来分数的值相等。“扩分”是将一个分数的分子和分母同乘以比1大的数。扩分后的分数和原来分数的值相等。“通分”是利用约分或扩分,将两个分母不同的分数,分别化为同分母的分数。笔算分数的加减法时,必须将分母用予倍的方法化成同一数字才能进行同级分数之和或差,这个过程称为“扩分”、“通分”、“通分母扩分子”等等,为了方便地求得所须分母,计算时一般以加数和被加数的最小公倍数作为新的分母。然后将事先倍大了的分子加上,合成和后再作约简。例如:分数乘法最晚在中国秦代即有,里耶秦简博物馆馆长彭成刚表示:里耶秦简秦朝“九九表”每枚木牍上竖写的数字连起来就是一个乘法运算,更为惊奇的是,中国当时还出现了分数乘法,例如二乘以二分之一等于一。分数的乘除无视分子母的特性,将分子和分母各自处理便可,但是由于整数除法亦容易引起小数,加上不适合出现于分数形式,而且除法也是乘法的逆函数,故此计算时一般将被除数化成其倒数,把除法改为乘法较为方便。例如:

相关

  • 膳食补充剂营养补充品,又称营养补充剂、膳食补充剂、营养剂、饮食补充剂、保健食品、健康食品等,是一种成分是从食物中萃取对人体有益的营养素(如氨基酸、微量元素、维生素、矿物质等)的补
  • 先天性挛缩细长指先天性挛缩细长指是一种遗传病,其症状包括多发性关节的先天挛缩、细长的手指与脚趾、脊柱侧弯或后凸、骨质减少、胸部及脸部变形、肌肉发育不良等。其发生率为1/2,但只会在父
  • 国务院安全生产委员会1999年规定:印章直径5厘米,中央刊五角星,由国务院制发。国务院安全生产委员会,是中华人民共和国国务院成立的国务院议事协调机构,负责安全生产工作。1984年11月26日,国务院批准了
  • 卢旺达– 非洲(浅蓝及深灰)– 非盟(浅蓝)卢旺达共和国(卢旺达语:Repubulika y'u Rwanda,法语:République du Rwanda, 英语:Republic of Rwanda, 斯瓦希里语:Jamhuri ya Rwanda),通称卢旺达,是
  • 日德兰语日德兰语(Jysk,宽式IPA:/ˈjysg̊/)属于印欧语系-日尔曼语族-北日尔曼语支-丹麦语,是通行于丹麦王国西部日德兰半岛的方言,也零星通行于德国境内的部分地区。日德兰语发音与标准丹麦
  • 连写体合字、连字、连结字或合体字(英语:Ligature),在西方字体排印学中一般表示将多于一个字母的合成一个字形。如印刷品中常常将拉丁字母两个字母fi的i上一点常与f的一钩合并,而德语字
  • 印度苦楝树Melia azadirachta L. Antelaea azadirachta (L.) Adelb.印度苦楝树(英语:Azadirachta indica),又称印度楝树、印度蒜楝、印度假苦楝、宁树(英语:Neem)、印度紫丁香(Indian lilac),楝
  • 蛋白质结构预测蛋白质结构预测(英语:Protein structure prediction)是指从蛋白质的氨基酸序列中预测蛋白质的三维结构。也就是说,从蛋白质的一级结构预测它的折叠和二级、三级、四级结构。结
  • 冶炼冶炼是指从矿石中提取出金属单质的过程。自然界中的金属矿石一般是相应金属元素与氧、硫等元素形成的化合物,因此需要通过化学还原的方法使金属元素还原成单质。现代的冶炼工
  • 干城章嘉峰干城章嘉峰(Kanchenjunga),也称作金城章嘉峰,海拔8,586米,为世界第三高峰(仅次于珠穆朗玛峰与乔戈里峰),也是印度的最高峰。它位于喜马拉雅山脉中段尼泊尔和印度的边界线上,东经88度0