分母

✍ dations ◷ 2025-11-09 06:54:19 #分母
N ⊆ Z ⊆ Q ⊆ R ⊆ C {displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数 R + {displaystyle mathbb {R} ^{+}} 自然数 N {displaystyle mathbb {N} } 正整数 Z + {displaystyle mathbb {Z} ^{+}} 小数 有限小数 无限小数 循环小数 有理数 Q {displaystyle mathbb {Q} } 代数数 A {displaystyle mathbb {A} } 实数 R {displaystyle mathbb {R} } 复数 C {displaystyle mathbb {C} } 高斯整数 Z [ i ] {displaystyle mathbb {Z} }负数 R − {displaystyle mathbb {R} ^{-}} 整数 Z {displaystyle mathbb {Z} } 负整数 Z − {displaystyle mathbb {Z} ^{-}} 分数 单位分数 二进分数 规矩数 无理数 超越数 虚数 I {displaystyle mathbb {I} } 二次无理数 艾森斯坦整数 Z [ ω ] {displaystyle mathbb {Z} }二元数 四元数 H {displaystyle mathbb {H} } 八元数 O {displaystyle mathbb {O} } 十六元数 S {displaystyle mathbb {S} } 超实数 ∗ R {displaystyle ^{*}mathbb {R} } 大实数 上超实数双曲复数 双复数 复四元数 共四元数(英语:Dual quaternion) 超复数 超数 超现实数素数 P {displaystyle mathbb {P} } 可计算数 基数 阿列夫数 同余 整数数列 公称值规矩数 可定义数 序数 超限数 '"`UNIQ--templatestyles-00000015-QINU`"' p进数 数学常数圆周率 π = 3.141592653 … {displaystyle pi =3.141592653dots } 自然对数的底 e = 2.718281828 … {displaystyle e=2.718281828dots } 虚数单位 i = − 1 {displaystyle i={sqrt {-1}}} 无穷大 ∞ {displaystyle infty }分数(fraction)是用分式(分数式)表达成 a b {displaystyle {frac {a}{b}}} 的数( a , b ∈ Z , b ≠ 0 {displaystyle a,bin Z,bneq 0} )。在上式之中, b {displaystyle b} 称为分母(Denominator)而 a {displaystyle a} 称为分子(Numerator),可视为某件事物平均分成 b {displaystyle b} 份中占 a {displaystyle a} 份,读作“ b {displaystyle b} 分之 a {displaystyle a} ”。中间的线称为分线或分数线。有时人们会用 a / b {displaystyle a/b} 来表示分数。分数有各种不同的用法与意义:这些概念在数学里都是相通的,只是在不同的使用场合中有其实际意义no分数如自然数般,跟从互联律、结合律、分配律和反除以零的规则。一个分数约分后或扩分后,其分数与原来之分数的值相等,称为等值分数。“约分”是将一个分数的分子和分母同除以一个比1大的整数(它们的公约数)。 约分后的分数和原来分数的值相等。“扩分”是将一个分数的分子和分母同乘以比1大的数。扩分后的分数和原来分数的值相等。“通分”是利用约分或扩分,将两个分母不同的分数,分别化为同分母的分数。笔算分数的加减法时,必须将分母用予倍的方法化成同一数字才能进行同级分数之和或差,这个过程称为“扩分”、“通分”、“通分母扩分子”等等,为了方便地求得所须分母,计算时一般以加数和被加数的最小公倍数作为新的分母。然后将事先倍大了的分子加上,合成和后再作约简。例如:分数乘法最晚在中国秦代即有,里耶秦简博物馆馆长彭成刚表示:里耶秦简秦朝“九九表”每枚木牍上竖写的数字连起来就是一个乘法运算,更为惊奇的是,中国当时还出现了分数乘法,例如二乘以二分之一等于一。分数的乘除无视分子母的特性,将分子和分母各自处理便可,但是由于整数除法亦容易引起小数,加上不适合出现于分数形式,而且除法也是乘法的逆函数,故此计算时一般将被除数化成其倒数,把除法改为乘法较为方便。例如:

相关

  • 新发传染病新兴传染病一般定义是近二十年以来,新出现在人类身上的传染病,而该疾病的发生率除了有快速增加的趋势,且在地理分布上有扩张的情况,甚至发展出新的抗药性机制等 ,都可以算是新兴
  • 恋物恋物(Sexual fetishism / Erotic fetishism)是指对无生命物体或性器官以外的身体部位的性固着。在医学上,单纯的恋物并非病态,但若构成了当事人极大的痛苦或对其生活的某些层面
  • 裸子植物被子植物 Angiosperm裸子植物(学名:Gymnospermae)是指种子植物中,胚珠在一开放的孢子叶上边缘或叶面的植物,孢子叶通常会排列成圆椎的形状。裸子植物共有5个门约14科88属超过一千
  • 华沙华沙(波兰语:Warszawa 试听)是波兰首都及最大城市,位于维斯拉河两岸,距波罗的海和喀尔巴阡山脉大约350公里。2008年人口数字为1,707,983人,都市圈人口大约2,785,000人。城市面积
  • 真双子叶植物真双子叶植物(学名:eudicots)是被子植物的演化支之一,由道利(Doyle)和霍顿(Hotton)在1991年提出来的,是划分被子植物门中“非木兰类双子叶植物”,也就是说花粉具有三孔的植物类群。包
  • 克莱县克莱县(Clay County, Georgia)是美国乔治亚州西南部的一个县,西邻阿拉巴马州。面积562平方公里。根据美国2000年人口普查,共有人口3,357人。县治盖恩斯堡 (Fort Gaines)。成立于
  • 和谐和谐可以指:
  • 爱德华四世爱德华四世(Edward IV,1442年4月28日-1483年4月9日),英格兰国王,由1461年3月4日到1483年4月9日在位。玫瑰战争中约克家族的主要领导者。约克公爵理查·金雀花之子,出生于法国的鲁昂
  • 咬伤咬伤是外伤的一种,由动物撕咬导致,常见猫、狗、蛇类咬伤。被人咬致伤也可包括在内。根据动物种类不同,对咬伤的处置主要有防止伤口感染、防止传染病、防中毒及止血等措施。
  • 尔撒尔撒(阿拉伯语:عيسى‎),在伊斯兰教中,被认为是真主的使者,穆斯林宣称尔撒即是基督宗教中的耶稣。他是真主安拉派遣予犹太人之先知;并且带给凡人一个新的经文——《引支勒》(未被