转动惯量

✍ dations ◷ 2024-07-08 03:31:17 #转动惯量
在经典力学中,转动惯量又称惯性矩(英语:Moment of inertia),通常以 ″ I ″ {displaystyle ''I''} 表示,国际单位制为·。转动惯量是一个物体对于其旋转运动的惯性大小的量度。一个刚体对于某转轴的转动惯量决定了对于这物体绕着这转轴进行某种角加速度运动所需要施加的力矩。转动惯量在转动力学中的角色相当于线性动力学中的质量,描述角动量、角速度、力矩和角加速度等数个量之间的关系。对于一个质点, I = m r 2 {displaystyle I=mr^{2}} ,其中 m {displaystyle m} 是其质量, r {displaystyle r} 是质点和转轴的垂直距离。对于一个有多个质点的系统, I = ∑ i = 1 N m i r i 2 {displaystyle I=sum _{i=1}^{N}{m_{i}r_{i}^{2}}} 。对于刚体,可以用无限个质点的转动惯量和,即用积分计算其转动惯量, I = ∫ ρ r 2 d V {displaystyle I=int {rho r^{2}}dV} ,其中 ρ {displaystyle rho } 是密度, d V {displaystyle dV} 是微量体积。在直线运动, F = m a {displaystyle F=ma} 。在旋转运动,则有 τ = I α {displaystyle {tau }=I{alpha }} ,其中 τ {displaystyle {tau }} 是力矩, α {displaystyle {alpha }} 是角加速度。一般物件的动能是 K = 1 2 m v 2 {displaystyle K={frac {1}{2}}mv^{2}} 。将速度 v {displaystyle v} 和质量 m {displaystyle m} ,用转动力学的定义取代:得出简化得如果一个人坐在一张可转动的椅子,双手拿重物,张开双手,转动椅子,然后突然将手缩到胸前,转动的速度将突然增加,因为转动惯量减少了。平行轴定理是说,如果一个质量为 m {displaystyle m} 的物件,以某条经过质心 A {displaystyle A} 点的直线为轴,其转动惯量为 I A {displaystyle I_{A}} 。在空间取点 B {displaystyle B} ,使得 A B {displaystyle AB} 垂直于原本的轴。那么如果以经过 B {displaystyle B} 、平行于原本的轴的直线为轴, A B {displaystyle AB} 的距离为 d {displaystyle d} ,则 I B = I A + m d 2 {displaystyle I_{B}=I_{A}+md^{2}} 。垂直轴定理是说,如果一个平面物件,以该平面内两条互相垂直、交于 A {displaystyle A} 点的直线为轴,转动惯量分别为 I 1 {displaystyle I_{1}} 、 I 2 {displaystyle I_{2}} ,则它以过 A {displaystyle A} 点且垂直于该平面的直线为轴的转动惯量 I 3 = I 1 + I 2 {displaystyle I_{3}=I_{1}+I_{2}} 。伸展定则是说,如果一个物件中的任一质点沿平行于某条轴的方向发生任意位移,该物件对该轴的转动惯量不变。对于三维空间中任意一参考点 Q {displaystyle Q} 与以此参考点为原点的直角坐标系 Q x y z {displaystyle Qxyz} ,一个刚体的惯性张量 I {displaystyle mathbf {I} ,!} 是这里,矩阵的对角元素 I x x {displaystyle I_{xx},!} 、 I y y {displaystyle I_{yy},!} 、 I z z {displaystyle I_{zz},!} 分别为对于 x {displaystyle x} -轴、 y {displaystyle y} -轴、 z {displaystyle z} -轴的转动惯量。设定 ( x ,   y ,   z ) {displaystyle (x, y, z),!} 为微小质量 d m {displaystyle dm,!} 对于点 Q {displaystyle Q} 的相对位置。则这些转动惯量以方程定义为矩阵的非对角元素,称为惯量积,以方程定义为如图 A {displaystyle A} ,一个刚体对于质心 G {displaystyle G} 与以点 G {displaystyle G} 为原点的直角坐标系 G x y z {displaystyle Gxyz} 的角动量 L G {displaystyle mathbf {L} _{G},!} 定义为这里, r {displaystyle mathbf {r} ,!} 代表微小质量 d m {displaystyle dm,!} 在 G x y z {displaystyle Gxyz} 坐标系的位置, v {displaystyle mathbf {v} ,!} 代表微小质量的速度。因为速度是角速度 ω {displaystyle {boldsymbol {omega }},!} 叉积位置,所以,计算 x {displaystyle x} -轴分量,相似地计算 y {displaystyle y} -轴与 z {displaystyle z} -轴分量,角动量为如果,我们用方程(1)设定对于质心 G {displaystyle G} 的惯性张量 I G {displaystyle mathbf {I} _{G},!} ,让角速度 ω {displaystyle {boldsymbol {omega }},!} 为 ( ω x , ω y , ω z ) {displaystyle (omega _{x};,;omega _{y};,;omega _{z}),!} ,那么,平行轴定理能够很简易的,从对于一个以质心为原点的坐标系统的惯性张量,转换至另外一个平行的坐标系统。假若已知刚体对于质心 G {displaystyle G} 的惯性张量 I G {displaystyle mathbf {I} _{G},!} ,而质心 G {displaystyle G} 的位置是 ( x ¯ ,   y ¯ ,   z ¯ ) {displaystyle ({bar {x}}, {bar {y}}, {bar {z}}),!} ,则刚体对于原点 O {displaystyle O} 的惯性张量 I {displaystyle mathbf {I} ,!} ,依照平行轴定理,可以表述为证明:a)参考图B,让 ( x ′ ,   y ′ ,   z ′ ) {displaystyle (x,', y,', z,'),!} 、 ( x ,   y ,   z ) {displaystyle (x, y, z),!} 分别为微小质量 d m {displaystyle dm,!} 对质心 G {displaystyle G} 与原点 O {displaystyle O} 的相对位置:依照方程(2),所以,相似地,可以求得 I y y {displaystyle I_{yy},!} 、 I z z {displaystyle I_{zz},!} 的方程。b)依照方程(3),因为 x = x ′ + x ¯ {displaystyle x=x,'+{bar {x}},!} , y = y ′ + y ¯ {displaystyle y=y,'+{bar {y}},!} ,所以相似地,可以求得对于点 O {displaystyle O} 的其他惯量积方程。参视图C,设定点 O {displaystyle O} 为直角坐标系的原点,点 Q {displaystyle Q} 为三维空间里任意一点, Q {displaystyle Q} 不等于 O {displaystyle O} 。思考一个刚体,对于 O Q {displaystyle OQ} -轴的转动惯量是这里, ρ {displaystyle rho ,!} 是微小质量 d m {displaystyle dm,!} 离 O Q {displaystyle OQ} -轴的垂直距离, η {displaystyle {boldsymbol {eta }},!} 是沿着 O Q {displaystyle OQ} -轴的单位矢量, r = ( x ,   y ,   z ) {displaystyle mathbf {r} =(x, y, z),!} 是微小质量 d m {displaystyle dm,!} 的位置。展开叉积,稍微加以编排,特别注意,从方程(2)、(3),这些积分项目,分别是刚体对于 x {displaystyle x} -轴、 y {displaystyle y} -轴、 z {displaystyle z} -轴的转动惯量与惯量积。因此,如果已经知道,刚体对于直角坐标系的三个坐标轴, x {displaystyle x} -轴、 y {displaystyle y} -轴、 z {displaystyle z} -轴的转动惯量。那么,对于 O Q {displaystyle OQ} -轴的转动惯量,可以用此方程求得。因为惯性张量 I {displaystyle mathbf {I} ,!} 是个实值的三维对称矩阵,我们可以用对角线化,将惯量积变为零,使惯性张量成为一个对角矩阵。所得到的三个特征值必是正实值;三个特征矢量必定互相正交。换另外一种方法,我们需要解析特征方程也就是以下行列式等于零的的三次方程:这方程的三个根 λ 1 {displaystyle lambda _{1},!} 、 λ 2 {displaystyle lambda _{2},!} 、 λ 3 {displaystyle lambda _{3},!} 都是正实的特征值。将特征值代入方程(8),再加上方向余弦方程,我们可以求到特征矢量 ω ^ 1 {displaystyle {hat {boldsymbol {omega }}}_{1},!} 、 ω ^ 2 {displaystyle {hat {boldsymbol {omega }}}_{2},!} 、 ω ^ 3 {displaystyle {hat {boldsymbol {omega }}}_{3},!} 。这些特征矢量都是刚体的惯量主轴;而这些特征值则分别是刚体对于惯量主轴的主转动惯量。假设 x {displaystyle x} -轴、 y {displaystyle y} -轴、 z {displaystyle z} -轴分别为一个刚体的惯量主轴,这刚体的主转动惯量分别为 I x {displaystyle I_{x},!} 、 I y {displaystyle I_{y},!} 、 I z {displaystyle I_{z},!} ,角速度是 ω {displaystyle {boldsymbol {omega }},!} 。那么,角动量为刚体的动能 K {displaystyle K,!} 可以定义为这里, v ¯ {displaystyle {bar {v}},!} 是刚体质心的速度, v {displaystyle v,!} 是微小质量 d m {displaystyle dm,!} 相对于质心的速度。在方程里,等号右边第一个项目是刚体平移运动的动能,第二个项目是刚体旋转运动的动能 K ′ {displaystyle K,!',!} 。由于这旋转运动是绕着质心转动的,这里, ω {displaystyle {boldsymbol {omega }},!} 是微小质量 d m {displaystyle dm,!} 绕着质心的角速度, r {displaystyle mathbf {r} ,!} 是 d m {displaystyle dm,!} 对于质心的相对位置。应用矢量恒等式,可以得到或者,用矩阵来表达,所以,刚体的动能为假设 x {displaystyle x} -轴、 y {displaystyle y} -轴、 z {displaystyle z} -轴分别为一个刚体的惯量主轴,这刚体的主转动惯量分别为 I x {displaystyle I_{x},!} 、 I y {displaystyle I_{y},!} 、 I z {displaystyle I_{z},!} ,角速度是 ω {displaystyle {boldsymbol {omega }},!} 。那么,刚体的动能为利用线密度 λ = m ℓ {displaystyle {begin{smallmatrix}lambda ={frac {m}{ell }}end{smallmatrix}}} 可轻易计算出细长棒子沿质心(CM)自转的转动惯量。当自转轴移到末端,转动惯量变成:

相关

  • 低聚异麦芽糖低聚异麦芽糖 (IMO)是具有拥有α-(1-6)-糖苷键的异麦芽糖的寡糖形式,不能被人消化。包括异麦芽糖、异麦芽三糖、异麦芽四糖、异麦芽五糖和潘糖、黑曲霉糖(英语:nigerose)、曲二
  • 英国总项目150,000,000件 13,950,000本书 824,101本刊物 351,116本手抄本(单册) 8,266,276件邮品 4,347,505件地图绘制品 1,607,885首乐谱 3,000,000件录音资料大英图书馆(British
  • α肾上腺素受体肾上腺素能受体(英语:Adrenergic receptors,或称为肾上腺素受体)是一类接受儿茶酚胺类物质刺激的代谢型G蛋白偶联受体,所接受的儿茶酚胺类主要是去甲肾上腺素以及肾上腺素。尽管
  • 经典物理学经典物理学所涉及的物理学领域通常是一些在量子力学与相对论之前发展出来的理论。经典物理学所概括的精确范围必须依上下文而定。当研讨狭义相对论时,经典物理学指的是在相对
  • 蛋糕蛋糕是一种糕点,其味道通常以甜为主,但也有以咸为主的。典型的蛋糕是以烤的方式制作出来。蛋糕一般是正式用餐,特别是婚礼或生日聚会时可选的甜点之一。在某些传统中,新娘和新郎
  • 扣带回扣带回是位于大脑内侧的一个解剖结构。扣带回将胼胝体不完全地包裹;在上方,扣带回为扣带沟所限。扣带回是脑的边缘系统的一部分。其功能牵涉情感、学习和记忆。扣带回的皮层称
  • 萤火虫萤科(学名:Lampyridae)是鞘翅目(甲虫)里面的一个科,该科在全世界有2000多种。俗称萤火虫,又称火金姑 (闽南语)、火焰虫(客语)、游火虫(江苏)、亮火虫(四川)、火火虫(云南);古称耀夜、景天、熠
  • 方钠石方纳石(英语:Sodalite),又称苏打石,为蓝色架状硅酸盐矿物,被广泛作为装饰用的宝石。尽管块状的方纳石大多呈现不透明,但是晶体通常是透明到半透明的。和蓝方石、黝方石(英语:Nosean)、
  • 赵进东赵进东(1956年11月-),生于重庆,原籍江苏武进,中国植物生理学及藻类学家,北京大学生命科学学院教授。1956年生于重庆,原籍江苏武进。1982年毕业于西南师范大学,1990年在美国德克萨斯大
  • 墨镜太阳眼镜,又称墨镜或者太阳镜,是为了保护眼睛所设计的护目镜,镜片往往是黑色或深色,借此来避免阳光(尤其是紫外线)刺激眼部,同时太阳眼镜有寿命需定期送检。在史前时代,因纽特人早已