六角状

✍ dations ◷ 2024-12-22 18:36:43 #六角状
在几何学中,六边形是指有六条边和六个顶点的多边形,其内角和为720度。六边形有很多种,其中对称性最高的是正六边形。正六边形是一种可以使用尺规作图的六边形,也可以拼满平面,因此自然界中可以找到许多正六边形的结构,如蜂巢、玄武岩和苯的分子结构。另外,正六边形也可以构成一些高对称性的多面体,如截角二十面体,巴克明斯特富勒烯的分子结构就是这种形状。六边形依照其类角的性质可以分成凸六边形和非凸六边形,其中凸六边形代表所有内角的角度皆小于180度。非凸六边形可以在近一步分成凹六边形和星形六边形,其中星形六边形表示边自我相交的六边形。正六边形是每条边等长、每个角相等的六边形,在施莱夫利符号中可以用 { 6 } {displaystyle left{6right}} 来表示。正六边形亦可以将正三角形透过截角变换来构造,即切去正三角形的三个顶点,因此正六边形在施莱夫利符号中亦可以写为 t { 3 } {displaystyle tleft{3right}} 。但若截角深度太深或太浅都会产生一种具有两个不同边长的六边形。正六边形是一个同时具有边可递和点可递特性的六边形,是一种双心多边形,这意味着它同时具有内切圆和外接圆。正六边形边的长度与其外接圆半径相等,且等于边心距的 2 3 3 {displaystyle {frac {2{sqrt {3}}}{3}}} 倍,其中,边心距与内切圆半径相等。正六边形的每个内角都是120度,且具有6次的旋转对称性(阶数为6的旋转对称性)和6轴对称性(有6个对称轴的轴对称性),组成了D6二面体群的对称性。正六边形最长的对角线是两侧顶点的对角线,其长度恰好为边长的两倍,因此若有一个三角形其中一个顶点位于六边形几何中心、其中一条边与六边形共用,则这个三角形是正三角形,且正六边形可以分割成6个此三角形。正六边形是其中一种能够密铺平面的正多边形,其余两种为正三角形和正方形。如同正方形和正三角形一样,正六边形可以经过重复的排列和组合,形成没有空隙或重叠的几何图形,这种图行每个顶点都是3个六边形的公共顶点,并形成一个很紧密的二维空间充填,也因此大部分的蜂窝都会将其的每个蜂房做成六边形,使其能够有效地利用空间和建材。另外,正三角形镶嵌的沃罗诺伊图是正六边形镶嵌。虽然具有等边的特性,但并不常被当作等边多边形(英语:Equilateral polygon)。正六边形的最大直径 D {displaystyle D} 是最大半径或外接圆半径 R {displaystyle R} 的两倍,其外接圆半径 R {displaystyle R} 与边长 t {displaystyle t} 等长。正六边形的面积为:也可以利用其边心距套用任意正多边形公式求得:正六边形可以单单用圆规直尺绘画。因为当正六边形内接于圆时,圆的半径刚好等于正六边形的边长,正六边形最长的对角线就等于圆的直径。中国古代对圆周和直径的关系有“周三径一”之说,可以视为采用正六边形为圆的近似图形求得的结果。下面是正六边形的尺规作图,共三步。因为正六边形由六个等边三角形组成,所以:正六边形的面积=三角形面积×6= 3 4 × a 2 × 6 = 3 2 a 2 3 {displaystyle {frac {sqrt {3}}{4}}times a^{2}times 6={frac {3}{2}}a^{2}{sqrt {3}}}这些等边三角形的高是正六边形内切圆的半径,即 3 2 a {displaystyle {frac {sqrt {3}}{2}}a} 。有多种六边形可以独立密铺平面,换句话说即该六边形反复拼接可以无空隙地填满整个平面扭歪六边形,又称不共面六边形,是指顶点并非完全共面的六边形一些正扭歪六边形来自于高为多胞体的皮特里多边形。部分多面体具有六边形的截面,例如立方体、正八面体和正十二面体。在立方体中,六边形的截面穿过对边的中点。由于正六边形具有高度对称性,且可以无空隙地填满整个平面,这种形状称为正六边形镶嵌,其顶点排布(英语:vertex arrangement)称为六边形网格(英语:Hexagonal Grid)。以这些顶点为几何中心的圆形可以构成二维空间中可能的圆形镶嵌中最紧密的一种排布,其牛顿数(英语:Kissing number)为6,也因此自然界经常出现许多正六边形的结构,例如蜂巢、玄武岩和一些化学物质的分子结构。石墨的分子结构蜂巢龟壳由旅行者1号发现、2006年被惠更斯号确认的土星北极的六边形风暴苯的分子结构玄武岩一些六方晶系矿物的结晶六角的雪花由于法国的领土像一个六边形,因此法国人也经常用“六边形”(L'Hexagone)。1988年发行的戴高乐1法郎硬币(法语:Pièce de 1 franc de Gaulle)上,就印有代表法国的六边形。

相关

  • 陆生植物陆生植物一般指生活在陆地上且茎叶完全伸展在空气中的植物,能适应干旱的环境。与水生植物相比,陆生植物拥有庞大的根系,从土壤中吸收水分。植物学与进化生物学中,陆生植物一般特
  • 咽头人类的咽(pharynx),又称咽头,是颈部的一个部分,为一条连接口腔和鼻腔至食道和气管(食道和气管交界)的圆锥形通道,是消化道和呼吸道的交会处。咽头与喉头在解剖学上合称为咽喉。人类
  • 库欣综合征库兴氏综合征(法语:Le syndrome de Cushing; 英语:Cushing's syndrome)亦称库欣氏综合征、柯兴氏综合征、皮质醇增多症,其中包括库欣氏病(Cushing's disease,专指由原发性脑下腺瘤
  • 南斯拉夫内战1991–1992:  克罗地亚1991–1992: 塞尔维亚克拉伊纳共和国 南斯拉夫人民军1992–1994:  克罗地亚1992–1994:1992–1994: 南联盟 塞族共和国 塞尔维亚克拉伊纳共和国 南
  • 喃音陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 自由落体定律自由落体运动是指只受重力作用(不存在空气阻力的理想状态)的均匀加速度运动过程。运动过程中重力势能与动能之和遵守机械能守恒定律。在地球上相同位置与相同高度,自由落体的加
  • 季候风季风(又称季候风)是周期性的风,随着季节变化,并且盛行风向(40%以上风频)季节切变达120度以上(按照传统定义,非全球性季风定义)。主要发生在季风亚洲(东亚、东南亚、南亚地区)、西非几内
  • 四羰基镍四羰化镍,或称羰基镍、四羰基合镍,是一个有机金属配合物,分子式为Ni(CO)4。1890年首先由路德维希·蒙德(Ludwig Mond)制得,是第一个合成的简单金属羰基配合物。室温下四羰基镍为无
  • 美国体育与其它国家一样,体育在美国是民族文化一个重要的组成部分。美国体育与其它地区相比有很大的不同。首先美国人喜欢一些特别在美国流行的体育项目,例如与美式足球、棒球、篮球和
  • 汉考克县汉考克县(Hancock County, Georgia)是美国乔治亚州东北部的一个县。面积1,240平方公里。根据美国2000年人口普查,共有人口10,076人。县治斯巴达(Sparta)。成立于1793年12月17日,以