切线

✍ dations ◷ 2025-04-03 12:19:45 #切线
切线(英语:tangent line),为一几何名词,应用于曲线及平面圆时意义有所不同。设L为一条曲线,A, B为此曲线上的点,过此二点作曲线的割线,令B趋向A,如果割线的极限存在,则称此极限(一条直线)为曲线在A的切线。几何上,切线指的是一条刚好触碰到曲线上某一点的直线。更准确地说,当切线经过曲线上的某点(即切点)时,切线的方向与曲线上该点的方向是相同的,此时,“切线在切点附近的部分”最接近“曲线在切点附近的部分”(无限逼近思想)。tangent在拉丁语中就是“to touch”的意思。类似的概念也可以推广到平面相切等概念中。P和Q是曲线C上邻近的两点,P是定点,当Q点沿着曲线C无限地接近P点时,割线PQ的极限位置PT叫做曲线C在点P的切线,P点叫做切点;经过切点P并且垂直于切线PT的直线PN叫做曲线C在点P的法线(无限逼近的思想)。注意:平面几何中,将和圆只有一个公共交点的直线叫做圆的切线.这种定义不适用于一般的曲线;PT是曲线C在点P的切线,但它和曲线C还有另外一个交点;相反,直线l尽管和曲线C只有一个交点,但它却不是曲线C的切线。与一个圆只有一个交点的直线,叫此圆的切线。性质:

相关

  • 丝状病毒丝状病毒科(学名:Filoviridae),单股反链病毒目,是一种感染脊椎动物的病毒,包含的属有埃博拉病毒和马尔堡病毒。病毒粒(Virion)具有复杂构造,具外套膜(envelope),核鞘(nucleocapsid),聚合酶
  • 盘嵴亚界古虫界(学名:Excavata)是单细胞生物的一个主要超级群组,属于真核生物域,由汤玛斯·卡弗利尔-史密斯于2002年引入的一个新的支序亲缘学分类。古虫界包含了许多自由生存或共生的原
  • 麝猫麝猫(civet),又名麝香猫,是灵猫科的大部分物种。它们的身体细小及柔软,大部分栖息在树上。一般外表像猫,但鼻端较长及甚至是尖的,有点像水獭或獴。麝猫的长度不一,不计算尾巴约有0
  • 巴伐利亚州巴伐利亚自由州(德语:Freistaat Bayern),简称巴伐利亚州,又称拜恩州、拜仁州,是德意志联邦共和国东南部的一个联邦州,其面积位居德国第一(占全国面积1/5)、人口第二(次于北莱茵-威斯特
  • 航天发射中心name = 'Aero', description = '航空太空科技(航空航天科技)', content = {{ type = 'text', text = [=[本页面没有类似于NoteTA的数量限制。 请自行修改分类名。在NoteTA样板
  • Bradyrhizobiaceae慢生根瘤菌科(学名:Bradyrhizobiaceae)是细菌的一个科,其下包括有十个属。 它们包括与植物相关的细菌,例如慢生根瘤菌属(Bradyrhizobium)就是一种生长于豆科植物根部的根瘤菌,有固氮
  • 太保市坐标:23°26′02″N 120°15′02″E / 23.433899°N 120.250671°E / 23.433899; 120.250671 (Puzih)太保市(台湾话:.mw-parser-output .sans-serif{font-family:-apple-system
  • 1180年重要事件及趋势重要人物
  • 契尔年科康斯坦丁·乌斯季诺维奇·契尔年科(俄语:Константи́н Усти́нович Черне́нко,1911年9月24日-1985年3月10日),苏共中央总书记、苏共中央政治局委员、
  • 泡利不相容原理在量子力学里,泡利不相容原理(英语:Pauli exclusion principle,简称为泡利原理或不相容原理:148)表明,两个全同的费米子不能处于相同的量子态。这原理是由沃尔夫冈·泡利于1925年