比哈姆-米德尔顿-莱文交通流量模型

✍ dations ◷ 2025-11-20 04:53:38 #细胞自动机,自动机,交通

比哈姆-米德尔顿-莱文交通流量模型(英语:Biham–Middleton–Levine traffic model)是一个自我组织,格状自动的交通流量模型。此模型由很多以移动的点组成,每一个点表示一部汽车,启始位置由乱数决定。这些点可分为二类:分别是只会向下移动的蓝色点和只会向右移动的红色点。这两类的点轮流移动。在每个回合开始时,所有的点只要不被其他点阻挡,便可以前进一格。因此,此模型可视为第184规则的二维版本。另外,此模型亦是最简单的展示出相变过程和自我组织的模型。

比哈姆-米德尔顿-莱文交通流量模型是由奥弗·比哈姆、阿兰·米德尔顿和多夫·莱文于1992年制定的。奥弗发现,随着交通密度增加,其稳态情况便会由畅通迅速变为完全堵塞。于2005年,拉伊萨·杜泽发现在畅通和完全堵塞的情况之间,还有一个过渡阶段。同年,亚历山大·霍尔罗伊德是第一个能证明在密度接近时,必定会发生堵塞情形。于2006年,蒂姆·奥斯汀和板井本杰明发现一个边长是N的正方体点阵,而汽车数量小于N/2时,模型就一定会以全速运行。

模型中的汽车通常会被放置在一个在拓扑结构上相当于一个圆环正方形点阵上。这代表当汽车移动至右方尽头时,就会在左边重新出现;而当汽车移动至下方尽头时,就会在上方重新出现。

亦有一些模型的点阵为矩形,而非正方形。对于拥有互质尺寸的矩形,其动态都会隔一段时间后重复。而对于非互质的矩形,其动态则通常会是混乱的。

尽管模型简单,它亦能被分为两个的阶段:堵塞阶段和自由流动阶段。对于拥有少量汽车的模型,模型通常会进行自我组织以令交通自由流动。相反,对于拥有大量汽车的模型,模型通常会堵塞起来,并令汽车不能再移动。方型模型在通常情况下,其堵塞临介点密度都会在32%左右。

中间阶段会在交通密度到达转变密度时出现,并同时拥有自由流动阶段和堵塞阶段的特性。而中间阶段又可分为两种:混乱状态(即亚稳定状态)和周期性状态(即可证稳定状态)。混乱状态并不会出现于拥有互质尺寸的矩形模型中。于2008年,专家发现周期性的中间阶段亦会出现于方形模型中。

相关

  • 伪阳性第一型及第二型错误(英语:Type I error & Type II error)或型一错误及型二错误为统计学中推论统计学的名词。在假设检验中,有一种假设称为“零假设(虚无假设)”;假设检验的目的是利
  • 核形虫目核形虫是一类原生生物,具有丝状伪足,生活在土壤和淡水里。它们与同样具有丝状伪足的vampyrellid形态上非常相似,但可以通过线粒体的盘状嵴来鉴别。核形虫与动物、真菌以及其它
  • 刃位錯位错(英语:dislocation),在材料科学中,指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体缺陷)。从几何角度看,位错属于一种线缺陷,可视为晶体中已滑移部分与未滑移部分的分
  • 撒玛利亚救援会撒马利亚救援会(Samaritan's Purse),或译普善施,是一个总部位于美国北卡罗来纳州布恩的基督教福音派国际慈善机构。现任会长是葛福临。该组织的名称来自《新约》中好撒马利亚人
  • 动物群动物相(拉丁文:Fauna),又译动物群或动物区系,指某一地区某一时段的特定动物种群。Fauna的另一个意思是动物志,是对一个动物区系的纪录和描述。“动物相”翻译自欧洲语言的Fauna,这
  • 形式形式可以指:
  • 肖斯塔科维奇德米特里·德米特里耶维奇·肖斯塔科维奇(俄语:Дмитрий Дмитриевич Шостакович,1906年9月25日-1975年8月9日),前苏联时期俄国作曲家。他一生大部分时
  • 普天间美军基地26°16′15″N 127°44′53″E / 26.27083°N 127.74806°E / 26.27083; 127.74806 (普天间)坐标:26°16′15″N 127°44′53″E / 26.27083°N 127.74806°E / 26.27083; 12
  • 北京石油化工学院北京石油化工学院位于北京市大兴区黄村地区清源北路19号,该校创建于1978年,简称石化学院。是中央与北京市共建,以北京市管理为主的学校。目前拥有位于大兴清源和康庄的两处校区
  • 信托受益人信托受益人在英美法中,指为本身的利益而设立信托的人。私人信托的受益人应为可辨认的法律实体(自然人或法人)或一批人(如信托设立人的子女)。信托受益人必须是确定的,要新增信托受