比哈姆-米德尔顿-莱文交通流量模型

✍ dations ◷ 2025-11-18 12:53:41 #细胞自动机,自动机,交通

比哈姆-米德尔顿-莱文交通流量模型(英语:Biham–Middleton–Levine traffic model)是一个自我组织,格状自动的交通流量模型。此模型由很多以移动的点组成,每一个点表示一部汽车,启始位置由乱数决定。这些点可分为二类:分别是只会向下移动的蓝色点和只会向右移动的红色点。这两类的点轮流移动。在每个回合开始时,所有的点只要不被其他点阻挡,便可以前进一格。因此,此模型可视为第184规则的二维版本。另外,此模型亦是最简单的展示出相变过程和自我组织的模型。

比哈姆-米德尔顿-莱文交通流量模型是由奥弗·比哈姆、阿兰·米德尔顿和多夫·莱文于1992年制定的。奥弗发现,随着交通密度增加,其稳态情况便会由畅通迅速变为完全堵塞。于2005年,拉伊萨·杜泽发现在畅通和完全堵塞的情况之间,还有一个过渡阶段。同年,亚历山大·霍尔罗伊德是第一个能证明在密度接近时,必定会发生堵塞情形。于2006年,蒂姆·奥斯汀和板井本杰明发现一个边长是N的正方体点阵,而汽车数量小于N/2时,模型就一定会以全速运行。

模型中的汽车通常会被放置在一个在拓扑结构上相当于一个圆环正方形点阵上。这代表当汽车移动至右方尽头时,就会在左边重新出现;而当汽车移动至下方尽头时,就会在上方重新出现。

亦有一些模型的点阵为矩形,而非正方形。对于拥有互质尺寸的矩形,其动态都会隔一段时间后重复。而对于非互质的矩形,其动态则通常会是混乱的。

尽管模型简单,它亦能被分为两个的阶段:堵塞阶段和自由流动阶段。对于拥有少量汽车的模型,模型通常会进行自我组织以令交通自由流动。相反,对于拥有大量汽车的模型,模型通常会堵塞起来,并令汽车不能再移动。方型模型在通常情况下,其堵塞临介点密度都会在32%左右。

中间阶段会在交通密度到达转变密度时出现,并同时拥有自由流动阶段和堵塞阶段的特性。而中间阶段又可分为两种:混乱状态(即亚稳定状态)和周期性状态(即可证稳定状态)。混乱状态并不会出现于拥有互质尺寸的矩形模型中。于2008年,专家发现周期性的中间阶段亦会出现于方形模型中。

相关

  • 凤梨蛋白酶菠萝蛋白酶(英语:Bromelain,也简称为菠萝酶、菠萝酶、菠萝酵素)可以意指两种物质,其中一个是狭义指自菠萝科植物榨取出的蛋白酶,另一个则是广义指从榨取物中的其他成分与这些蛋白
  • 幽闭恐惧症幽闭恐惧症是对密闭空间的一种焦虑症,患者在某些情况下,例如电梯、车厢、隧道或者机舱内,可能发生恐慌症状态,或者害怕会发生恐慌症状。反过来说,容易恐慌症发作的人,通常也会产生
  • 露意莎·梅·奥尔柯特路易莎·梅·奥尔科特(Louisa May Alcott,1832年11月29日-1888年3月6日)是一位19世纪的美国小说家,最著名的作品是《小妇人》,这部小说是以奥尔科特的童年经历为基础所创作的,并于1
  • rhinoceros beetle兜虫亚科(Dynastinae),为鞘翅目金龟子科的其中一个甲虫亚科,成员里的雄性成虫大多都拥有或大或小的犄角,也因此吸引了许多收藏家争相收藏,如目前已知最长的甲虫长戟大兜虫、重量感
  • 顶呱呱顶呱呱(英语:TKK International Inc.)是一间台湾的速食连锁餐厅,于1974年7月20日于台北市西门町成立第一家门市,以炸鸡类餐点为主。截至2019年1月,顶呱呱在台湾共有70间餐厅、于中
  • 托马斯·罗兰森托马斯·罗兰森(Thomas Rowlandson /ˈroʊləndsən/;1756年7月13日-1827年4月21日)是一位英格兰漫画家,以其反映社会和政治问题的讽刺画知名。和维多利亚时代的大多数讽刺画家(
  • 宗教改革运动瓦勒度派(12世纪) 阿维尼翁教廷(1309–77年) 约翰·威克里夫(1320–84年) 天主教会大分裂(1378–1417年) 扬·胡斯(约1369–1415年) 胡斯战争(1420–约1434年) 北方文艺复兴 德意志神秘
  • 哈立德·伊本·巴尔马克哈立德·伊本·巴尔马克(英语:Khalid ibn Barmak,705年-782年),巴尔马克家族在阿拔斯王朝显赫权力的奠基人。阿拉伯人占领巴尔赫后,巴尔马克家族迁往巴士拉,在那里改宗了伊斯兰教。
  • 商用客机座椅商用客机座椅是供乘客们在航空旅行时坐的。这种座位通常整齐排列在机身中。座位的布局图通常被称为座位图。在早期的的飞机上,座椅往往是一般的家用扶手椅,但这种座椅对于飞行
  • 陈龙可陈龙可,字蛩潜,福建晋江人,明朝政治人物、进士出身。天启二年(1622年)登壬戌进士,选南京户部主事,后转升员外郎、郎中,改任琼州知府。