立体渲染

✍ dations ◷ 2025-01-22 21:11:51 #立体渲染
立体渲染(英语:Volume rendering),又称为体绘制,是一种用于显示离散三维采样数据集的二维投影的技术。一个典型的三维数据集是CT或者MRI采集的一组二维切面图像。通常这些数据是按照一定规则如每毫米一个切面,并且通常有一定数目的图像像素。这是一个常见的立体晶格的例子,每个体素用当前体素附近区域的采样值表示。为了渲染三维数据集的二维投影,首先需要定义相机相对于几何体的空间位置。另外,需要定义每个点即体素的不透明性以及颜色,这通常使用RGBA(red, green, blue, alpha)传递函数定义每个体素可能值对应的RGBA值。通过提取几何体中等值的曲面并且将它们作为多边形进行渲染,或者直接将立体作为数据块进行渲染,这两种方法都可以使几何体可见。Marching Cubes算法是从立体数据中提取曲面的常用技术。直接体渲染是一件计算量很大的工作,可以用几种不同的方法来实现。直接立体渲染要求每个采样值都必须映射到对应的不透明性以及颜色,这是通过一个“传递函数”实现的,这个传递函数可能是简单的斜面、也可能是分段线性函数或这是任意的表格。一旦转换到RGBA值之后,对应的RGBA结果就会映射到帧缓冲中对应的像素。根据渲染技术的不同这个做法也有所不同。使用多种技术的组合也是可行的。例如去除扭曲的实现可以用纹理硬件在屏幕外的缓存中绘制排列好的片断。主条目:立体光线投射。投影图像最简单的方法就是立体光线投射。在这种方法中,每个图像点都生成对应的光线。按照一个简单的照相机模型,光线从照相机(通常是眼睛位置)中心开始投射,经过照相机与需要渲染的立体之间的假象平面上的图像。光线在立体的边界进行剪切以节约处理时间,然后在整个立体空间上按照一定规则对光线进行采样。在每个采样点数据进行插值计算,经过传递函数变换成RGBA采样值,这个采样添加到光线的RGBA数据集中,然后重复这个过程直到光线抵达立体内部。RGBA颜色转换到RGB颜色并且放到对应的图像像素上。屏幕上的每个像素都重复这个过程直到形成完整的图像。在 上可以看到高质量的光线投射渲染几何体的实例。这是一个通过牺牲质量换取速度的方法。每个立体元素都象雪球那样按照从后到前的顺序splatted到观察表面。这些splats按照颜色与透明度特性在直径方向正态即高斯变化渲染成圆盘。平盘与其它特性也根据应用的不同而不同。一个新的体渲染实现方法是Philippe Lacroute与Marc Levoy一起开发的在论文“使用Shear-Warp分解观察角度变换的快速体渲染”中描述的方法。在这种技术中,观察角度进行变换使得最近的体表面成为后台图像缓冲区按照体素到像素的固定尺度排列的轴,然后渲染的立体按照方便的内存排列、固定的缩放及过渡因子放到这个缓冲区中。一旦立体的所有的切片已经渲染完毕,缓冲数据就会转换到在前台显示图像中所要的方向及尺度。这种方法通过牺牲采样精度得到了相对较快的处理速度,但是这种方法生成的图像潜在质量要比光线投射方法生成的图像质量差。许多三维图形系统都通过纹理映射将图像、纹理用于几何物体。日常所用PC的图形处理卡处理纹理非常快速并且能够高效地渲染三维立体切片,并且具有实时的交互能力。这些切片可以根据几何体进行排列然后按照观察者的角度进行渲染,也可以根据观察平面进行排列然后从立体中未经排列的切片进行采样。对于第二种技术来说需要图形硬件支持三维纹理处理。根据立体排列纹理的方式能够生成合理的图像质量,但是当立体旋转的时候经常会产生明显的过渡。根据视角排列纹理的方式可以得到类似于光线投射的高质量图像,并且采样图案也是相同的。最近出现的一项加速渲染的技术是使用图形处理卡加速如光线投射这样的传统的体渲染算法。从2000(?)年左右开始出现的像素着色器pixel shaders开始,人们逐渐认识到多点并行运算的威力并且开始在图形芯片上执行更加普通的计算。像素着色器pixel shaders能够随机地读写纹理内存并且执行一些基本的算术与逻辑计算。这些现在称为GPU的单指令流多数据流处理器用于如光线跟踪多边形以及信号处理中的普通计算。在OpenGL 2.0版上,pixel shaders现在能够作为多指令流多数据流处理器使用并且能够独立进行分支切换,能够使用高达48个并行处理单元,并且能够使用高达1 GB的纹理内存以及high bit depth数字格式。通过这样的能力,理论上象立体光线投射或者CT重建这样的算法都能够得到极大的加速。立体渲染系统经常带有一个识别立体区域是否包含可见物体的部分,这个信息可以用于避免在这些透明区域进行渲染。这是按照从前到后顺序渲染几何体的时候所用的一项技术。对于穿过一个像素的光线,一旦达到一定程度的浓度,那么后面的采样点对于这点来说就起不到多大作用,因此可以忽略。使用如八叉树或者二元空间分割树的层次结构对于体数据压缩以及优化体光线投影过程来说都非常有用。通过分割出渲染前不需要关心的部分,就可以大幅度地减少光线投影或者纹理混合所需要的计算量。

相关

  • 侵袭性的肺炎链球菌感染肺炎链球菌(学名:Streptococcus pneumoniae)是一种球状的革兰氏阳性菌,持有α溶血性,链球菌属下的一种菌。肺炎链球菌于1880年代已被发现能引致肺炎,是一种重要的人类病因,亦是体液
  • 甲烷甲烷(化学式:CH4;英语:Methane),是结构最简单的烷类,由一个碳原子以及四个氢原子组成。它是最简单的烃类也是天然气的主要成分。甲烷在地球上有很高的相对丰度,使之成为很有发展潜力
  • 托马斯·哈克尔·韦勒托马斯·哈克尔·韦勒(Thomas Huckle Weller,1915年6月15日-2008年8月23日)是一位美国病毒学家。1954年,他与约翰·富兰克林·恩德斯、弗雷德里克·查普曼·罗宾斯一同被授予了诺
  • 流行病流行病指可以感染众多人口的疾病,但不一定为传染病。流行病可以只是在某地区发生,亦可以是全球性的大流行。欧洲语言中,辞源均来自希腊语,如英语的epidemic,法语的épidémie等。
  • 羊膜羊膜是羊膜动物(包括爬行动物,鸟类 和哺乳动物)的胚胎所具有的一种结构。其本质是一层封闭的生物膜,其内包裹着的空间称为羊膜囊,内含的液体称为羊水。羊膜的主要作用是保护胚胎
  • 病原微生物病原体(希腊语:πάθος pathos “痛苦”、“热情” 与 -γενής -genēs “生产者”),在生物学中,从最古老和最广泛的意义上说,就是任何可以产生疾病的事物。病原体也可以称
  • HCT血细胞比容(德语:Hämatokrit,英语:hematocrit 源于希腊语:αιματοκρίτης,简写 HCT / Ht)又称血比容、红血球容积比、血容比,旧名红细胞压积(packed cell volume,简写PCV)指
  • 不等鞭毛类不等鞭毛总门(学名:Heterokonta)旧为不等鞭毛门,是真核生物的主要演化支之一,已知的下辖物种超过10万个物种,当中大多数属于藻类,从多细胞的大型藻类海带,到单细胞的各种浮游硅藻,这
  • 子宫子宫,中医学常称胞宫,又称女子胞,是中医的奇恒之腑之一。位于小腹正中,膀胱之后,直肠之前,下口连接阴道,为女性发生月经和孕育胎儿的器官。子宫是雌性哺乳动物的生殖器官中,用来让胚
  • 松果体松果体(又叫做松果腺、脑上体)是一个位于脊椎动物脑中的小内分泌腺体。人体最小的器官。它负责制造褪黑素,一种会对醒睡模式与(季节性)昼夜节律功能的调节产生影响的激素其形状像