首页 >
立体渲染
✍ dations ◷ 2025-09-18 19:56:38 #立体渲染
立体渲染(英语:Volume rendering),又称为体绘制,是一种用于显示离散三维采样数据集的二维投影的技术。一个典型的三维数据集是CT或者MRI采集的一组二维切面图像。通常这些数据是按照一定规则如每毫米一个切面,并且通常有一定数目的图像像素。这是一个常见的立体晶格的例子,每个体素用当前体素附近区域的采样值表示。为了渲染三维数据集的二维投影,首先需要定义相机相对于几何体的空间位置。另外,需要定义每个点即体素的不透明性以及颜色,这通常使用RGBA(red, green, blue, alpha)传递函数定义每个体素可能值对应的RGBA值。通过提取几何体中等值的曲面并且将它们作为多边形进行渲染,或者直接将立体作为数据块进行渲染,这两种方法都可以使几何体可见。Marching Cubes算法是从立体数据中提取曲面的常用技术。直接体渲染是一件计算量很大的工作,可以用几种不同的方法来实现。直接立体渲染要求每个采样值都必须映射到对应的不透明性以及颜色,这是通过一个“传递函数”实现的,这个传递函数可能是简单的斜面、也可能是分段线性函数或这是任意的表格。一旦转换到RGBA值之后,对应的RGBA结果就会映射到帧缓冲中对应的像素。根据渲染技术的不同这个做法也有所不同。使用多种技术的组合也是可行的。例如去除扭曲的实现可以用纹理硬件在屏幕外的缓存中绘制排列好的片断。主条目:立体光线投射。投影图像最简单的方法就是立体光线投射。在这种方法中,每个图像点都生成对应的光线。按照一个简单的照相机模型,光线从照相机(通常是眼睛位置)中心开始投射,经过照相机与需要渲染的立体之间的假象平面上的图像。光线在立体的边界进行剪切以节约处理时间,然后在整个立体空间上按照一定规则对光线进行采样。在每个采样点数据进行插值计算,经过传递函数变换成RGBA采样值,这个采样添加到光线的RGBA数据集中,然后重复这个过程直到光线抵达立体内部。RGBA颜色转换到RGB颜色并且放到对应的图像像素上。屏幕上的每个像素都重复这个过程直到形成完整的图像。在 上可以看到高质量的光线投射渲染几何体的实例。这是一个通过牺牲质量换取速度的方法。每个立体元素都象雪球那样按照从后到前的顺序splatted到观察表面。这些splats按照颜色与透明度特性在直径方向正态即高斯变化渲染成圆盘。平盘与其它特性也根据应用的不同而不同。一个新的体渲染实现方法是Philippe Lacroute与Marc Levoy一起开发的在论文“使用Shear-Warp分解观察角度变换的快速体渲染”中描述的方法。在这种技术中,观察角度进行变换使得最近的体表面成为后台图像缓冲区按照体素到像素的固定尺度排列的轴,然后渲染的立体按照方便的内存排列、固定的缩放及过渡因子放到这个缓冲区中。一旦立体的所有的切片已经渲染完毕,缓冲数据就会转换到在前台显示图像中所要的方向及尺度。这种方法通过牺牲采样精度得到了相对较快的处理速度,但是这种方法生成的图像潜在质量要比光线投射方法生成的图像质量差。许多三维图形系统都通过纹理映射将图像、纹理用于几何物体。日常所用PC的图形处理卡处理纹理非常快速并且能够高效地渲染三维立体切片,并且具有实时的交互能力。这些切片可以根据几何体进行排列然后按照观察者的角度进行渲染,也可以根据观察平面进行排列然后从立体中未经排列的切片进行采样。对于第二种技术来说需要图形硬件支持三维纹理处理。根据立体排列纹理的方式能够生成合理的图像质量,但是当立体旋转的时候经常会产生明显的过渡。根据视角排列纹理的方式可以得到类似于光线投射的高质量图像,并且采样图案也是相同的。最近出现的一项加速渲染的技术是使用图形处理卡加速如光线投射这样的传统的体渲染算法。从2000(?)年左右开始出现的像素着色器pixel shaders开始,人们逐渐认识到多点并行运算的威力并且开始在图形芯片上执行更加普通的计算。像素着色器pixel shaders能够随机地读写纹理内存并且执行一些基本的算术与逻辑计算。这些现在称为GPU的单指令流多数据流处理器用于如光线跟踪多边形以及信号处理中的普通计算。在OpenGL 2.0版上,pixel shaders现在能够作为多指令流多数据流处理器使用并且能够独立进行分支切换,能够使用高达48个并行处理单元,并且能够使用高达1 GB的纹理内存以及high bit depth数字格式。通过这样的能力,理论上象立体光线投射或者CT重建这样的算法都能够得到极大的加速。立体渲染系统经常带有一个识别立体区域是否包含可见物体的部分,这个信息可以用于避免在这些透明区域进行渲染。这是按照从前到后顺序渲染几何体的时候所用的一项技术。对于穿过一个像素的光线,一旦达到一定程度的浓度,那么后面的采样点对于这点来说就起不到多大作用,因此可以忽略。使用如八叉树或者二元空间分割树的层次结构对于体数据压缩以及优化体光线投影过程来说都非常有用。通过分割出渲染前不需要关心的部分,就可以大幅度地减少光线投影或者纹理混合所需要的计算量。
相关
- 中耳炎中耳炎是一系列中耳发炎疾病之统称。其中以急性中耳炎(AOM)和中耳积水两型最为常见(OME)。急性中耳炎为急性感染所致,耳朵疼痛为其常见的临床症状。罹患急性中耳炎的幼童,常有拉扯
- 外科口罩外科口罩(surgical mask)是让医疗专业人员(英语:health professional)在手术及护理病患时穿戴的口罩,最初用意是避免细菌自穿戴者的口鼻散发在空气中,以降低对病患手术伤口的感染。
- 色素沉着绒毛结节性滑膜炎色素沉着绒毛结节性滑膜炎(英语:Pigmented villonodular synovitis,缩写为 英语:PVNS)也称为关节内的腱鞘巨细胞瘤(英语:intra-articular giant-cell tumor of the tendon sheath),是
- 克山病克山病是一种由硒缺乏及克沙奇病毒感染共同作用而引起的充血性心肌症。1935年于中国黑龙江省克山县首次发现,并以此得名。此种疾病后来被发现广泛存在于从中国东北至西南的广
- 环丙沙星环丙沙星(Ciprofloxacin)是第二代氟喹诺酮类化合广效抗生素(英语:Broad-spectrum antibiotic),可对抗多种病原菌。治疗范围包含骨骼感染、关节感染、腹部感染,以及特定几种感染性肠
- 导管导管是化学实验中常用的一种仪器,通常为中空的玻璃管或塑料管,有各种长短、口径和弯曲形状,在许多实验中都有所应用。导管一般用作气体或者液体流动的通道,与其他实验设备配合使
- 无氧呼吸呼吸作用,又称为细胞呼吸(Cellular respiration),是生物体细胞把有机物氧化分解并转化能量的化学过程,也称为释放作用。无论是否自养,细胞内完成生命活动所需的能量,都是来自呼吸作
- 光滑病毒科Levivirus Allolevivirus光亮(噬菌体)病毒科(Leviviridae)(光滑噬菌体科)代表种:
- H10N8甲型流行性感冒病毒H10N8亚型(英语:Influenza A virus subtype H10N8,记作A(H10N8)或H10N8)是一种甲型流感病毒,是禽流感病毒或禽流感病毒的一个亚型,由不同毒株经过基因重排产生
- 新墨西哥州新墨西哥州(纳瓦霍语:Yootó Hahoodzo;英语:New Mexico;西班牙语:Nuevo México),简称新墨州,是美国西南方的一州,它曾是墨西哥的一省。该州有许多西班牙裔的居民,亦有不少的美国原住民