首页 >
表面
✍ dations ◷ 2025-12-10 10:19:40 #表面
在立体几何中,立体几何体的边界被称作面或表面,更严谨地说,面是立体几何体的一个平坦表面,而不平坦的面通常称为曲面,而所有表面的总和称为表面积。在高维度几何以及高维的多胞形中,面也被用来指代构成多胞形的一个组成元素,通常会跟随其维度一同称呼,例如三维的元素称为3-面。在基础几何学中,面是指位于多面体边界的多边形,换句话说即多面体是一个由多边形构成的三维几何体,构成多面体的这些多边形就被称为面。例如:正方体有六个面,三棱锥有四个面。广义来说,面也可用来指代四多胞形的一个二维边界,就如我们说四维超正方体有24个正方形面。在三维空间中,任何凸多面体的欧拉示性数为2。欧拉示性数
χ
{displaystyle chi }
可以通过以下公式计算:以上式子中,V 是顶点的数量,E 是边的数量,F 是面的数量。例如,正方体有12条边,8个顶点和6个面。那么我们可以计算得正方体的欧拉示性数为2。在几何学中,维面(Facet)又称为超面(hyperface)是指几何形状的组成元素中,比该几何形状所在维度少一个维度的元素在几何学中,维面一词前面若加一个整数,则代表一几何结构中维度为该整数的元素,此概念不应与维面混淆。例如k维面代表几何结构中维度为k的元素,又称k面、k-面或k维元素而在更高维度中,有时会称为k维胞,这一用法并未限定元素的所属维度。例如立方体的多维面包括了空多胞形(负一维面)、顶点(零维面)、边(一维面)、正方形(二维面,一般称面)和其本身(三维面,一般称体)。正式地,对于一个多胞形P,多维面的定义是与一个“不与P内部相交的封闭半空间”的相交几何结构(如交点、交线或交面等)。多胞形中的多维面集合中同时也包含了多胞形本身和空多胞形。
相关
- 拿破仑战争反法同盟胜利,维也纳会议大英帝国 奥地利帝国(1800–1805、1809、1813–1815) 匈牙利王国(1809) 俄罗斯帝国(1804–1807、1812–1815) 普鲁士王国(1806–1807、1812–1815) S
- 圣十字圣殿佛罗伦萨圣十字圣殿(意大利语:Basilica di Santa Croce)是方济各会在意大利佛罗伦萨的主要教堂,罗马天主教的一座次级圣殿,坐落在主教座堂东南方大约800米的圣十字广场。这个地点
- 生物滤化生物滤化(英语:Bioleaching)是指利用微生物将金属元素从矿物中提取出来的过程。这比传统的氰化物堆浸法要更为清洁。生物滤化是生物湿法冶金(英语:Biohydrometallurgy)的几种应用
- 世界最佳居住城市世界最佳宜居城市是指一系列的城市,因为俱有良好的生活条件,经评比依得分高低列出优异城市。目前有两个较有名的年度全球著名城市生活调查报告,分别是美世生活质素调查,以及经济
- 西伯利亚联邦管区西伯利亚联邦管区(俄语:Сибирский федеральный округ,罗马化:Sibirskí federaľný okrug)位于俄罗斯亚洲部分中部,是目前俄罗斯的联邦管区之一。2018
- 格林尼治天文台格林尼治皇家天文台(Royal Observatory, Greenwich),旧称皇家格林尼治天文台(Royal Greenwich Observatory,简称RGO),是英国国王查理二世于1675年在伦敦格林尼治建造的一个综合性天
- 确认偏误确认偏误(或称确认偏差、证实偏差、肯证偏误、验证偏误、验证性偏见、我方偏见,英语:Confirmation bias)是个人选择性地回忆、搜集有利细节,忽略不利或矛盾的资讯,来支持自己已有
- 富兰克林·皮尔斯富兰克林·皮尔斯(Franklin Pierce,1804年11月23日-1869年10月8日),美国政治人物、陆军退役准将,民主党党员,第14任美国总统(1853年-1857年)。皮尔斯是美国第一位出生于19世纪的美国总
- 亨里克·易卜生亨里克·约翰·易卜生(挪威语:Henrik Johan Ibsen,1828年3月20日-1906年5月23日),生于挪威希恩,是一位影响深远的挪威剧作家,被认为是现代现实主义戏剧的创始人。他的许多剧作在当时
- 斯坦福大学出版社斯坦福大学出版社(Stanford University Press, SUP)是斯坦福大学的出版社。1892年在斯坦福大学成立了一个独立的出版公司,1895年首次把“斯坦福大学出版社”的名称印在书上。 1
