基 (拓扑学)

✍ dations ◷ 2025-02-24 14:23:37 #点集拓扑学

在数学中,带有拓扑 的拓扑空间 的基(base 或 basis) 是 中开集的搜集,使得 中的所有开集可以被写为 的元素的并集。我们称基“生成”了拓扑 。基在拓扑学中有其作用,因为拓扑自身的很多性质可简化成生成拓扑的基的描述,且许多拓扑最容易依据生成它们的基来定义。

基有两个重要性质:

如果 的子集的搜集 不能满足任何一个条件,则它不是在 上任何拓扑的基(但它是准基,因为是 的子集的任意搜集。) 反过来说,如果 满足了这两个条件,则在 上有唯一一个 作为基的拓扑;它叫做 生成的拓扑。(这个拓扑是在 上包含 的所有拓扑的交集。) 这是定义拓扑的非常常用的方式。对 生成在 上的一个拓扑的充分但非必要条件是 闭合在交集下;则我们总是可以取得上述 3 = 。

例如,在实数线中的开区间的搜集形成在实数线上的拓扑的基,因为任何两个开区间的交集要么自身是开区间要么为空。事实上它们是在实数集上的标准拓扑的基。

但是,基不是唯一的。很多基甚至有不同的大小,可以生成相同的拓扑。例如,带有有理数端点的开区间们也是实数集的基,带有无理数端点的开区间们也是,但是这两个集合是完全不相交的并且都真正的包含在所有开区间的基中。对比于线性代数中向量空间的基,基不需要是极大化的;实际上,唯一的极大的基是这个拓扑自身。事实上,在空间中由基生成的任何开集都可以安全的增加到基中而不会改变拓扑。基的最小的可能的势叫做拓扑空间的重量。

不是基的开集搜集的一个例子是所有形如 (−∞, ) 和 (, ∞) 的半-无限区间的集合 ,这里的 是实数。 不是在 R 上的任何集合的基。要证明之,假设它是。那么例如,(−∞, 1) 和 (0, ∞) 作为一个单一基元素的并集,将在 生成拓扑中,并且因此它们的交集 (0,1) 也应该出现。但是 (0, 1) 明显不能写为 的元素的并集。使用可替代的定义,第二个性质失败,因为没有基元素可以容入这个交集内。

给定拓扑的一个基,要证明网或序列的收敛,在包含假定极限的所有基中的集合中最终证明它就是充分的。

闭集同样擅长描述空间的拓扑。因为有对于拓扑空间的闭集的对偶的基的概念。给定一个拓扑空间 , 的闭集基是闭集的集合族 使得任何闭集 是 的元素的交集。

等价的说,闭集族形成了闭集基,如果对于每个闭集 和每个不在 中的点 ,存在一个 的元素包含 但不包含 。

容易检查 是 的闭集基,当且仅当 的成员的补集的集合族是 的开集基。

设 是 的闭集基。则

满足这些条件的集合 的任何子集搜集形成 上的拓扑的闭集基。这个拓扑的闭集完全就是 的成员的交集。

在某些情况下,更习惯使用闭集基而非开集基。例如,一个空间是完全正规空间,当且仅当它的零集形成了闭集基。给定任何拓扑空间 ,零集形成在 上某个拓扑的闭集基。这个拓扑将是 上比最初的要粗的最细的完全正规拓扑。在类似的脉络下,在 A 上的 Zariski拓扑被定义为选取多项式函数的零集作为闭集基。

若拓扑空间 X {displaystyle X} 是最小的拓扑使得 X {displaystyle X} 的子集的集 B {displaystyle B} 都是 X {displaystyle X} 的开集,则称 B {displaystyle B} X {displaystyle X} 的一个准基(subbasis/subbase)。另一等价的定义为,若 B {displaystyle B} 及其所有有限交集构成了拓扑空间 X {displaystyle X} 之基,则 B {displaystyle B} 为准基。

例子:

J.W. 亚历山大证明了:若每个准基覆盖都有一个有限个元素的子覆盖,则此空间是紧致的。

邻域  · 内部  · 边界  · 外部  · 极限点  · 孤点

相关

  • 非编码DNA非编码DNA(英语:Non-Coding DNA,或称“垃圾DNA”),是指不包含制造蛋白质的指令,或是只能制造出无翻译能力RNA的DNA序列。此类DNA在真核生物的基因组中占有大多数。有很长的一段时
  • 情色描写历史情色描写(英语:erotic depictions)包括以绘画、雕塑、摄影、戏剧、音乐以及写作的手法描述人类的性相关的场面,这在历史上几乎所有文明都曾产生过,不分古今东西。在早期人类文化
  • 葵花籽油葵花籽,是指向日葵的果实 (连壳)或种子(去壳后)。颜色有黑色、白色和褐色,大部分种子都是多色于一体。可以做为零食,也可以榨油,葵花籽油可以用来煮菜,而且含有不饱和脂肪酸约90%,也是
  • 诗节诗节(stanza,与上位概念一共俗称verse),或节、联,是西方诗歌里的一个段落、小节。一个诗节的行数(line)并非固定。下面这首诗共有三个诗节,每个诗节有四行。 .mw-parser-output .tem
  • 坡地坡地(英文:slope land),亦称坡面或斜坡面,是倾斜角大于2°的倾斜地面。全部陆地表面的80%以上都属于坡地,故其为地貌的主要组成部分。坡地的发展变化导致了地貌形体的变化。认识坡
  • KBS韩民族放送KBS韩民族广播(朝鲜语:KBS 한민족방송/KBS 韓民族放送;英语:KBS Global Korean Network)是韩国放送公社(KBS)对韩国和周边国家的朝鲜族广播的一个频道。1972年,以社会教育放送的名义
  • 阿拉斯加州阿拉斯加州议会(Alaska Legislature),为美国阿拉斯加州的州议会。阿拉斯加州议会为两院制,包含下院阿拉斯加州众议院与上院阿拉斯加州参议院。众议院包含40名议员,参议院包含20名
  • 吠陀吠陀(梵语:वेद,转写:Veda,又译为韦达经、韦陀经、围陀经等),是婆罗门教和现代的印度教最重要和最根本的经典。“吠陀”意思是“知识”、“启示”。 广义的“吠陀”文献包括很多
  • 托多尔·阿勒克斯耶夫托多尔·阿勒克斯耶夫(保加利亚语:Тодор Алексиев;1983年4月21日-)是一位保加利亚排球运动员。他代表保加利亚国家男子排球队参赛,参加了2008年奥运会和2012年奥运会
  • 伐由盗龙属伐由盗龙属 ( 学名 : ,意为“风的盗贼”) 又译为风盗龙或风神盗龙,是一属基础虚骨龙类兽脚亚目恐龙,生存于旱白垩纪时期,即今天的泰国。该属只含有一个单一的物种,廊磨喃蒲伐由