广义相对论中的质量

✍ dations ◷ 2025-12-10 17:58:22 #广义相对论,质量

广义相对论中的质量此一概念较之于狭义相对论中的质量更为复杂。事实上广义相对论并没有对“质量”这一词汇提供单一的定义,而是提供了许多不同的定义,适用于不同的场合。在一些场合下,广义相对论中一系统之质量甚至可能是无法定义的。

在狭义相对论中,一孤立系统之不变质量(此后单纯称为“质量”)可以用此系统的能量与动量来定义:

其中 是系统总能量,是系统总动量,而 是光速。简明地说,狭义相对论中一系统的质量为能量-动量四维矢量的范数(norm)。

欲将狭义相对论中的质量定义推广到广义相对论,会遇到两个主要难关。第一个难关在于如何找出一系统之总能量与总动量,情况并不明确。在平直时空只需做积分,将系统各部分之能量-动量四维矢量加总在一起,即可找出整个系统的总能量-动量四维矢量。

但不幸地,如此简单的程序并无法直接推广到广义相对论,以各处的四维矢量存在于不同的切空间,而无法协变式地相加在一起。

第二个难关在于:为了要在广义相对论中定义质量,必需维持能量是一个守恒量,而已诠释为时空曲率的“重力场”仍带有能量,需考虑进去。

但不幸地,广义相对论中的能量守恒远不比其他物理学理论中直接。在其他经典理论中,例如牛顿重力、电磁学、流体力学(hydrodynamics),是可以派定一明确的能量密度值。举例来说,电场的能量密度是为 1 2 ϵ 0 E 2 {\displaystyle {1 \over 2}\epsilon _{0}E^{2}}

在广义相对论则不然。事实显示:一般来说,不可能将“重力能量”派定到一个明确位置上。

欲解决广义相对论中能量守恒问题的近代手法是完全避免用到“重力场”这一概念,并将能量守恒视为时间平移对称性(time translation symmetry)的结果。诺特定理(Noether's theorem)当初发展的目的就是特别针对此一问题,每当有时间平移对称性存在时,则定义了一守恒能量。

然而并非所有系统都有此一要求的时间平移对称性。对于不具有时间平移对称性的系统,在广义相对论中则没有对于能量的普适定义。

静态时空的非技术性定义可说为:一时空之度规 g μ ν {\displaystyle g_{\mu \nu }\,} 无一系数是时间函数。黑洞的史瓦西度规及转动黑洞的克尔度规是静态时空的常见例子。

照定义,一静态时空具有时间平移对称性。技术名词上,则存在有类时的戚灵矢量(Killing vector)。因为此系统有时间平移对称性,诺特定理保证期会有一守恒能量。又因为一静态系统也有一良好定义的静止系,在其中动量会考虑为零值,则定义系统能量也同时定义其质量。在广义相对论中,这样的质量称作是系统的柯玛质量(Komar mass)。柯玛质量仅能对静态系统做定义。

柯玛质量也可透过一通量积分(flux integral)来定义。这样的方式类似于高斯定律定义一被一个表面包围住的电荷是正向电力与面积的乘积。不过,用以定义柯玛质量的通量积分与用以定义电场的通量积分略有差异——正向力(normal force)并非真实的力,而是在“无限远处的力”。细节请参见柯玛质量条目。

上述两种定义,将柯玛质量描述为时间平移对称性者提供了最深层的见解。

相关

  • 蚊子蚊科(学名:Culicidae)是昆虫纲双翅目之下的一个科。该科生物通常被称为蚊或蚊子,是一种具有刺吸式口器的纤小飞虫。绝大多数蚊科的雄蚊以植物汁液为食,雌蚊则外寄生于其他生物表
  • 标靶治疗人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学靶向治疗或靶向分子治疗(英语:Targeted
  • 法国电视台法国电视台(法语:France Télévisions)为法国国营电视台,其资金来源主要为电视授权费用及电视广告收入。旗下频道有法国海外领地广播电视第一台(Réseau Outre-Mer 1ère)、法国
  • 洪雅族洪雅族(Hoanya)、亦名和安雅族或洪安雅族,为台湾平埔族原住民。 分布于台中市雾峰以南、彰化县、南投县、云林县、嘉义县市到台南市新营以北一带附近。本族包括罗亚族(Lloa)、阿
  • Aconitase结构 / ECOD顺乌头酸酶(英语:Aconitase,简称为乌头酸酶,EC 4.2.1.3)是一种在三羧酸循环中催化柠檬酸通过顺乌头酸中间步骤立体专一性可逆异构化为异柠檬酸的酶,这是一个非氧化还原
  • 帕拉瓦बाप तहसील घंटियाली 城镇帕拉瓦(Palawa),是印度贾坎德邦Hazaribag县的一个城镇。总人口9757(2001年)。该地2001年总人口9757人,其中男性5127人,女性4630人;0—6岁
  • 草酸亚铁草酸亚铁(化学式:FeC2O4)是铁(II)的草酸盐,黄色晶体,难溶于水,缓慢溶于浓盐酸。草酸亚铁可由Fe2+与C2O42-在溶液中的反应制得:如将硫酸酸化的硫酸亚铁铵和草酸溶液混合,加热并搅拌,静
  • 赛尚阿赛尚阿(满语:ᠠᡳᡧᠠᠩᡤᠠ,穆麟德:,太清:;1794年?-1875年),字鹤汀,蒙古正蓝旗人,阿鲁特氏。嘉庆二十一年蒙古翻译举人。历晚清朝后五朝(嘉、道、咸、同、光)蒙古族大臣;授文华殿大学士、
  • 施妍施妍(朝鲜语:시연 ;英语:Xiyeon,2000年11月14日-),本名朴正炫(朝鲜语:박정현 ),幼时曾以儿童演员身份拍过一些广告、电戏剧。2008年开始在Pledis娱乐当训练生,经过长达9年的时间,于2017
  • 卢国纪卢国纪(1923年-),四川省合川县(现重庆市合川区)人,中国企业家。民生集团创办人卢作孚之子。1923年出生于四川省合川县(现重庆市合川区)。毕业于国立中央大学工学院土木工程系(今东南大