首页 >
棱锥
✍ dations ◷ 2025-08-16 16:52:27 #棱锥
在几何学中,棱锥又称角锥,是三维多面体的一种,由多边形各个顶点向它所在的平面外一点依次连直线段而构成。多边形称为棱锥的底面。随着底面形状不同,棱锥的称呼也不相同,依底面多边形而定,例如底面是正方形的棱锥称为方锥,底面为三角形的棱锥称为三棱锥,底面为五边形的棱锥称为五棱锥等等。从棱锥的定义可以推知,一个以.mw-parser-output .serif{font-family:Times,serif}n边形为底面的棱锥,一共有n+1个顶点,n+1个面以及2n条边。棱锥的对偶多面体是同样形状的棱锥。例如一个方锥的对偶形是(倒立的)方锥。棱锥的对称性取决于底面多边形的形状和多边形以外那个顶点的位置。如果底面的多边形是正多边形,而且另外一个顶点在底面上的投影是多边形的中心,那么棱锥和正多边形有相同的对称结构(同构的对称群)。棱锥和棱柱、棱台、帐塔一样,都是拟柱体中的一类。在公元前1650年左右的莱因德数学纸草书中,棱锥已经作为数学对象被几何学家研究。纸草书的56至59题是有关正方锥的底边、高以及底面和侧面形成的二面角之间关系的计算,如已知高和底边长度,求二面角等:30-32。传说由欧几里德在公元前三世纪写成的《几何原本》中,第十二章第七个命题证明了:三角柱的体积等于同底同高的三角锥的三倍,但《几何原本》中没有给出直接的棱锥体积公式。公元一世纪左右成书的《九章算术》第五章中的第十二题,计算了正方锥、直方锥(阳马)、直三角锥(鳖臑)的体积,并给出了通用公式。公元三世纪中叶,数学家刘徽在给《九章算术》作的注中,运用极限思想证明了棱锥的体积公式。棱锥的底面是多边形,其中的顶点和多边形所在平面外的一点用直线段相连。平面外的这一点称为棱锥的顶点,底面多边形的顶点称为底面顶点。除了底面,其余的面称为棱锥的侧面,都是由棱锥顶点和多边形的两个相邻顶点构成的三角形。连接底面顶点和棱锥顶点的直线段,也是两个相邻侧面的公共边,称为棱锥的侧棱。一个以n边形为底面的棱锥,总计有n个侧面,加上底面,一共有n+1个面;多边形的每个顶点对应一条侧棱,一共有n条侧棱。如果两条侧棱不在同一个侧面,那么它们确定的平面截棱锥所得的截面是一个过棱锥顶点的三角形,其中两条边分别是两条侧棱,另一条边在底面上,是底面多边形的一条对角线,这个平面称为棱锥的一个对角面。:86如果底面是三角形,那么棱锥称为三棱锥或三角锥。如果每个面(包括底面)都是正三角形,这时的三棱锥就是正四面体。如果仅仅底面为正三角形,顶点在底面的投影是正三角形的中心,那么三个侧面都是全等的等腰三角形。这样的三棱锥叫做正三棱锥。同样地,底面为正多边形,而且另外一个顶点在底面上的投影是多边形的中心,这样的棱锥称为正棱锥。正棱锥的侧面都是全等的等腰三角形,侧棱都等长。每个侧面三角形以多边形的边为底边的话,高称为棱锥的斜高。:86如果平面外的顶点在底面的投影正好是多边形的某个顶点(等价于说平面外的顶点和某个顶点连成的直线垂直于地面),这样的棱锥称为直棱锥或直角棱锥。连接平面外顶点和其投影顶点的侧棱垂直于底面,所以包含这条侧棱的两个侧面也垂直于底面。棱锥的底面多边形不一定是凸多边形。如果是星形,则称为星锥。例如,底面是五角星,则对应的棱锥叫做五星锥。棱锥的体积取决于平面外顶点到底面的距离,以及底面多边形的面积。前者称为棱锥的高,后者称为棱锥的底面积。设
h
{displaystyle h}
为棱锥的高,
S
{displaystyle S}
为棱锥的底面积,
V
{displaystyle V}
为棱锥的体积,则棱锥的体积可以用以下公式计算:93:这个公式早在公元三世纪就得到了证明。现代的证明一般使用积分。假设有棱锥PA1A2...An,其中A1A2...An为底面的n边形,P为棱锥顶点。设P在底面的投影为Q点,PQ的长度为h。在线段PQ上取一点X,使得线段PX的长度为y:0 ≤ y ≤ h,那么过点X而且与底面平行的平面截棱锥得到的形状是一个和底面的n边形相似的n边形,记作Ax1Ax2...Axn,它的面积Sy与底面积S的比值等于PX与PQ的比值的平方:在点X附近截取的“一片”棱锥“切片”,它的体积大约等于:
d
V
y
≈
(
y
h
)
2
S
d
y
{displaystyle dV_{y}approx left({frac {y}{h}}right)^{2}Sdy}所以棱锥的体积等于积分:
V
=
∫
y
=
0
h
d
V
y
=
∫
y
=
0
h
(
y
h
)
2
S
d
y
=
h
3
3
⋅
S
h
2
=
1
3
S
h
.
{displaystyle V=int _{y=0}^{h}dV_{y}=int _{y=0}^{h}left({frac {y}{h}}right)^{2}Sdy={frac {h^{3}}{3}}cdot {frac {S}{h^{2}}}={frac {1}{3}}Sh.}对于正棱锥,假设它的底面是正n边形,边长为a,高是h,那么底面积是:
S
=
n
a
2
4
cot
π
n
.
{displaystyle S={frac {na^{2}}{4}}cot {frac {pi }{n}}.}
所以它的体积是:棱锥的侧面展开图是由各个侧面组成的,展开图的面积,就是棱锥的侧面积Sc棱锥的表面积等于棱锥的侧面积Sc加上底面积S。假设顶点的投影Q点到第 i 个侧面对应的底边的距离是di,底边的长度是ai,那么棱锥的侧面积:对于正n棱锥,顶点到底面的投影是底面正n边形的中心。所以投影点到每一边的距离都相等:
d
1
=
d
2
=
⋯
=
d
n
=
d
.
{displaystyle d_{1}=d_{2}=cdots =d_{n}=d.}
因此棱锥的斜高也就是侧面三角形的高:
l
=
h
2
+
d
2
.
{displaystyle l={sqrt {h^{2}+d^{2}}}.}
棱锥的侧面积:87:其中p是底面正n边形的周长。假设底面正n边形的边长是a,高是h,那么它的周长是na,中心到每一边的距离是
a
2
cot
π
n
{displaystyle {frac {a}{2}}cot {frac {pi }{n}}}
。所以斜高是:
h
2
+
a
2
4
cot
2
π
n
{displaystyle {sqrt {h^{2}+{frac {a^{2}}{4}}cot ^{2}{frac {pi }{n}}}}}
,侧面积是:若一锥体底面为正多边形则称为正棱锥。正棱锥是一个无穷集合,最小从三角锥开始,因为二角锥已退化成平面了。此外锥体亦可以做为球面镶嵌:锥体中只有一种属于正多面体,即正三角锥。三角柱 · 四角柱 · 五角柱 · 六角柱 · 七角柱 · 八角柱 · 九角柱 · ... · 无限角柱(双曲)三角反柱 · 四角反柱 · 五角反柱 · 六角反柱 · 七角反柱 · 八角反柱 · ... · 无限角反柱三角锥柱 · 四角锥柱 · 五角锥柱 · 六角锥柱 · 七角锥柱 · 八角锥柱 · ... · 无限角锥柱
相关
- 盖亚假说盖亚假说(英语:Gaia hypothesis)是由詹姆斯·洛夫洛克(James Lovelock)在1972年提出的一个假说。“地球整个表面,包括所有生命(生物圈),构成一个自我调节的整体,这就是我所说的盖亚。
- 海录海录是中国清代的一部地理著作,由谢清高口述,杨炳南笔录。于1820年刻印发行。书中介绍了全世界九十五个国家,是研究18世纪后期中西交通史和东南亚华侨史的重要资料。林则徐在广
- 内消旋化合物内消旋化合物是含有超过两个手性碳原子但没有旋光性的化合物。例如,酒石酸的一种异构体就是内消旋化合物,这是由于其分子有对称平面。一般情况下,如果分子含有超过两个手性碳原
- 地纹芋螺地纹芋螺(学名:Conus geographus 英文俗名:Geography cone),又名杀手芋螺,俗称鸡心螺,为芋螺科芋螺属的动物。分布于非洲沿岸、红海、印度、锡兰、日本以及中国大陆的海南、西沙群
- 季戊四醇四硝酸酯季戊四醇四硝酸酯(Pentaerythritol Tetranitrate,简称PETN;中文名:太安或太恩,又名彭梯儿)是已知最强烈的炸药之一,其相对有效指数(R.E. factor)达1.66。由于它是一种比TNT对撞击及摩
- 民权东路民权东路是台北市重要东西向道路之一,路名取自中华民国国父孙中山先生所著三民主义(民生、民权、民族)。属双向道路,分六段,部分路段设有公车专用道,西接民权西路;东接成功路。(由西
- 希腊菜希腊饮食(希腊语:Ελληνική Κουζίνα)为典型的地中海风格,受意大利、巴尔干诸国、土耳其等国影响。广泛使用橄榄油、蔬菜、香草、谷物,以及面包、酒、鱼,各种肉类,包
- 纯祖朝鲜纯祖(朝鲜语:조선 순조/朝鮮 純祖 Joseon Sunjo;1790年7月29日-1834年12月3日),名李玜(朝鲜语:이공/李玜 Yi Gong),是朝鲜王朝的第23代君主,1800年8月18日至1834年12月3日在位。纯
- 铃木一朗NPBMLB铃木一朗(英语:Ichiro Suzuki,1973年10月22日-),生于日本爱知县,前职业棒球选手,守备位置为外野手,曾效力于美国职棒大联盟西雅图水手、纽约洋基、迈阿密马林鱼等球队,并保有大
- 大分县大分县(日语:大分県/おおいたけん〔おほいたけん〕 Ōita ken */?)位于日本九州东北部。县政府大分市。温泉数量和涌出泉量皆是日本第一名。面向别府湾的别府温泉和位于大分县