活动标架法

✍ dations ◷ 2025-02-24 04:49:05 #微分几何,联络

数学上,光滑流形上的标架可以理解为从一点到一点变化的标架。给定一个这样的流形和一个其中的点,在点的一个标架表示一个在点的切空间的向量空间基底。也就是说,若维数为,我们给定个切向量1, ..., ,属于在的切空间,而且线性独立。在的某个邻域的一个活动标架要求我们给定

每个都是定义在上的向量场,全都假设为作为的函数在中光滑,并且在每一点线性无关(为简单起见假设处处维数为)。

用非常一般的术语来讲,这样一个活动标架是广义相对论中的一个观测者的要求,在那里每个从到附近点的连续对i的选择都是平等的。而狭义相对论中,被取为一个四维的向量空间。在那种情况下,i可以简单的从平移到其它点。

在相对论和黎曼几何中,最重要的活动标架是和标架,也就是在每一点(单位长度的)互相垂直的向量的有序集。在给定一点可以通过正交化将任意标架变成正交;事实上,这可以以光滑的方式达到,因而一个活动标架的存在也就隐含了活动正交标架的存在。

活动标架在上局部的存在性是很显然的,这可以由流形的切丛是一个向量丛,需要满足局部平凡的条件得到;但是在上的全局存在性要求拓扑条件的满足。例如,当是一个圆圈,或者是一个环,这样的标架存在;但是当是一个二维球时却不存在。存在一个全局活动标架的流形称为可平行化的,其等价于M的切丛TM是平凡的。注意,例如将纬度和经度的单位方向作为地球表面上的活动标架在北极和南极会有问题。

埃里·嘉当的活动标架法基于对于所研究的特定问题取一个相应的活动标架。例如,给定一个空间中的曲线,曲线的前三个导数通常可以给出其上一点一个标架(参看定量的形式参看挠率-它假设挠率非0)。更一般地,活动标架的抽象含义是将切丛作为一个向量丛时,其伴随丛主丛的一个截面。一般的嘉当方法利用了这点,并在嘉当联络中讨论。

对于球面只有 S 1 {\displaystyle S^{1}} S 3 {\displaystyle S^{3}} S 7 {\displaystyle S^{7}} 是可平行化的,其中 S 1 {\displaystyle S^{1}} S 3 {\displaystyle S^{3}} 的可平行化性质可以从他们拓扑等价于李群 U ( 1 ) {\displaystyle U(1)} S U ( 2 ) {\displaystyle SU(2)} 看出。光滑李群的切丛光滑同胚于李群本身与李代数的直积,因此必然是平凡的。

相关

  • Br溴(原子量:79.904(1))共有45个同位素,其中有2个同位素是稳定的。备注:画上#号的数据代表没有经过实验的证明,只是理论推测而已,而用括号括起来的代表数据不确定性。
  • 局部麻醉局部麻醉药(英语:local anesthetic)是指那些在人体的限定范围内能暂时完全地和可逆地阻断神经传导,即在意识未消失的状况下使人体的某一部分失去感觉,以便于外科手术进行的药物。
  • 政治体系政体(英语:form of government),是国家的政治、统治形态,即国家政治体系运作的形式。一般用来指涉一个国家政府的组织结构和管理体制,在不同的历史时期,不同的国家和地域,政治体制都
  • 永冻层永冻土(英语:Permafrost,又译永冻层、永冻土层或多年冻土)是一个地质学的名词,指当冻土层(frost soil)处于水的结冰点以下超过两年的状况。永冻层一般分布在地下30~40公分处,通常又
  • 圣路易斯华盛顿大学诺贝尔奖得主列表诺贝尔奖由瑞典皇家科学院、瑞典学院、卡罗琳学院和挪威诺贝尔委员会每年颁发一次,分别授予在化学、物理学、文学、和平、生理学或医学和经济学领域作出杰出贡献的人士。除经
  • 太阳方位角太阳方位角是太阳在方位上的角度,它通常被定义为从北方沿着地平线顺时针量度的角。它可以利用下面的公式,经由计算得到良好的近似值,但是因为反正弦值,也就是x = sin−1(y)有两
  • 磁性半导体磁性半导体(英语:Magnetic semiconductor)是一种同时体现铁磁性和半导体特性的半导体材料。如果在设备里使用磁性半导体,它们将提供一种新型的导电方式。尽管传统的电子技术基于
  • 密脉木属密脉木属(学名:)是茜草科下的一个属,为小灌木植物。该属共有15种,分布于热带亚洲。
  • 本多孝好本多孝好(1971年-),日本小说家。东京都出身,庆应义塾大学法学部毕业。自幼喜欢阅读,小学读乱步,初中读赤川,高中读半村,大学时则酷爱村上春树和村上龙的作品,大四时(1994年)曾以短篇小说
  • 加蚋埔加蚋埔,或译为打猎埔、嘉猎埔。位于台湾屏东县高树乡泰山村,指称泰山村中部的一个台湾原住民马卡道族聚落。当地以完整的夜祭、祈雨祭而知名。该地因邻近排湾族莎卡兰部落(即