表示式

✍ dations ◷ 2025-11-28 02:32:02 #Mathematics templates,抽象代数,代数

表示式亦称表达式、运算式或数学表达式,在数学领域中是一些符号依据上下文的规则,有限而定义良好的组合。数学符号可用于标定数字(常量)、变量、操作、函数、括号、标点符号和分组,帮助确定操作顺序以及有其它考量的逻辑语法。

表达式的使用范围从简单的如下列各例:

到很复杂的组合表达式:

数学表达式的各种形式包括了算术、多项式、代数、闭合形式和解析的表达式。下表列出了这些种类中所可能包含的元素。


表达式是一个句法结构,它必须具有良好定义的形式。表达式中的运算符必须在正确位置有正确的输入数,组成这些输入的字符必须是有效的,具有明确的运算次序等。违反语法规则的字符,不会构成有效的数学表达式。例如,在一般算术符号中,表达式是形式良好的,但下面的表达式却没有:

表达式的语义是对语句意义的研究,逻辑语义学是关于所传达的意义。在代数中,可用表达式指定一个值;而这个结果值取决于对式中变量所赋予的值,经由附加语义的运算符操作后以确定该值。语义的选择则根据表达式的上下文。同一个表达式可能会有不同结果(依算数惯例的结果为7,也可能是9),这取决于上下文中隐含的运算次序。

语义规则可以声明某些表达式并无指定值(例如,当它们除以0时);对这表达式称为未定义,但它们仍然以良好的形式表现出来。广义来说,表达式的意义并不局限于指定值;例如,表达式可用于指定条件,表示要被求解的方程,或将其视为可根据某些规则而操作的对象。有指定值的表达式同时也代表了有假设前提,例如与 {\displaystyle \oplus }


数学表达式的评估取决于上下文背景对式中运算符的定义,赋值的定义域和评估结果的域。如果两个表达式之中的变量,对于它们赋值的每一种组合都产生相同的输出,则这两个表达式被认定为相等,即它们实为相同的函数。

例如,表示式 n = 1 3 2 n x {\displaystyle \sum _{n=1}^{3}2nx} 有自由变数 x {\displaystyle x} 、约束变数 n {\displaystyle n} 、常数 1 , 2 , 3 {\displaystyle 1,2,3} 、两个内含的乘法算符和一个总和算符。
此一表示式和另一较简单的表示式 12 x {\displaystyle 12x} 相等。 x = 3 {\displaystyle x=3} 时的值为 36 {\displaystyle 36}

相关

  • 华盛顿州华盛顿州(英语:State of Washington),简称华州,是一个位于美国西北太平洋沿岸的州,北接加拿大不列颠哥伦比亚省,南接俄勒冈州,东临爱达荷州,西邻太平洋。为纪念美国首任总统,乔治·华
  • 河床河床(英语:river bed)是指河流底部被水流冲占的部分。枯水期河水占据谷地较小部分,洪水期占据面积最广,甚至整个谷底被水流占据。由河床及其衍生的地貌单元又称为河床地貌。从河
  • span class=nowrapIrClsub4/sub/span四氯化铱是一种无机化合物,化学式为IrCl4,为水溶性的暗褐色无定形固体。四氯化铱的结构未得到准确表征,分子中会含有少量水和氯铱(IV)酸。它用于制备催化剂,如Henbest催化剂,可用
  • 科思创科思创(德语:Covestro AG})是一家德国化学工业公司。创建于2015年9月1日,前身是拜耳材料科学事业部。后来剥离出来成为一家独立公司。 2015年10月在法兰克福证券交易所挂牌上
  • 探险者1号探险者一号(英语:Explorer 1)是美国于1958年1月31日在佛罗里达州卡拉维纳尔角发射的第一颗地球人造卫星,晚于前苏联于1957年10月4日发射的世界第一颗地球人造卫星史普尼克1号和
  • 建州三卫建州三卫是中国明代为统治东北建州女真所居地区而设立的三个卫,包括建州卫、建州左卫、建州右卫,其首领大多为女真族世袭领袖。其中建州卫建于明成祖永乐元年(1403年),以胡里改部
  • 1960年代非洲从殖民主义到独立的转变,被称为非洲的非殖民化急剧加速的十年时代,在1960年和1968年之间,共有32个国家独立。意味着欧洲殖民帝国统治非洲大陆的结束,然而,这些新国家的崇高愿
  • 永远的0《永远的0》(日语:永遠の0)是一本由百田尚树所写的日本小说,讲述青年佐伯健太郎对外祖父生前战友进行探访追忆,以探寻战死的外祖父宫部久藏的过去。宫部久藏是太平洋战争期间一名
  • 朝鲜劳动党委员长朝鲜劳动党委员长(朝鲜语:조선로동당 위원장/朝鮮勞動黨 委員長),是朝鲜的唯一执政党朝鲜劳动党最高领导人的职称。该头衔于2016年5月6日在平壤举行的朝鲜劳动党第七次代表大会中
  • 肿瘤基因组学肿瘤基因组学(英语:oncogenomics)又称癌症基因组学(英语:cancer genomics)是基因组学中一门新兴的子学科,主要是通过高通量测序技术来将基因与癌症关联起来的学问。肿瘤是一种由 DN