结构群的约化

✍ dations ◷ 2025-11-30 13:24:57 #流形上的结构,纤维丛,微分拓扑学,微分几何

数学中,特别是在主丛理论中,我们可问一个 G {\displaystyle G} -丛 与映射 → (不必是包含),结构群的约化(从 到 )是一个 -丛 B H {\displaystyle B_{H}}

注意到这不一定存在,如果存在也不必惟一。

作为一个实例,每个偶数维实向量空间是一个复向量空间的背景实空间:它有一个线性复结构。一个实向量空间有一个殆复结构当且仅当它是一个复向量丛的背景实丛。这是沿着包含 (,C) → (2,R) 的一个约化。

用转移映射的术语来说,一个 -丛可以约化当且仅当转移映射可以取值于 。注意术语约化可能有误导性:它暗示 是 的一个子群,这是通常的情形,但不是必须的(比如自旋流形):更准确的说法是一个提升。

更抽象地,“ 上 -丛”是 的一个函子:给定一个映射 → ,诱导一个从 -丛到 -丛的一个映射(见上)。-丛 结构群的约化选择一个 -丛使其像是 。

从 -丛到 -丛的包含映射一般不是满的也不是单的,故结构群不是总能约化,且如果可以时,约化也不必是惟一的。例如,不是每个流形是定向的,而可定向的流形恰有两个定向。

如果 是 的一个子李群,则在 -丛 到 的约化与 商去由 的作用得到的纤维丛 / 之整体截面之间有一个一一对应。具体地,纤维化 → / 是 / 上一个主 -丛。如果 σ : → / 是一个截面,则拉回丛 H = σ−1 是 的一个约化。

向量丛的一些例子,特别是一个流形的切丛]]:

许多几何结构强于 -结构;它们是具有一个可积性条件的 -结构。从而这样一个结构要求一个结构群的约化(可能有阻碍,见下),但这不是充足的。这样的例子包括复结构、辛结构(相对于殆复结构与殆辛结构)。

另一个例子关于叶状结构,这要求将切丛结构群约化为一个分块矩阵,以及一个可积性条件,于是便可用弗罗贝尼乌斯定理。

-丛由分类空间 分类,类似的 -丛由分类空间 分类,一个 -丛上的诱导 -结构对应于包含映射 B H B G {\displaystyle BH\to BG} -丛,结构群的约化之阻碍是 ξ {\displaystyle \xi } 作为一个到上纤维 B G / B H {\displaystyle BG/BH} 映射的类;结构群可以约化当且仅当 ξ ¯ {\displaystyle {\bar {\xi }}} 所在的类是零同伦的。

H G {\displaystyle H\to G} 是同伦等价的,上纤维可缩,从而结构群的约化没有阻碍,例如 O ( n ) G L ( n ) {\displaystyle O(n)\to GL(n)}

反之,由平凡群包含 e G {\displaystyle e\to G} 诱导的上纤维还是 B G {\displaystyle BG} ,故绝对平行(丛的平凡化)的阻碍是丛的类。

作为一个简单的例子,视一个 G {\displaystyle G} -空间为一点上的 G {\displaystyle G} -丛,将一个 G {\displaystyle G} -空间约化为 H {\displaystyle H} -空间没有阻碍。在此情形分类映射是零同伦,因定义域是一个点。从而“向量空间结构群的约化”没有任何阻碍;故任何向量空间有一个定向,等等。

相关

  • 童年童年是从出生跨越到青春期的年龄段。童年由两个阶段组成:前运算阶段(preoperational stage)和具体运算阶段(concrete operational stage)。在发展心理学中,童年被分为四个发展阶段
  • 康沃尔语康沃尔语(Kernowek)是属于凯尔特语族中,包括威尔士语、布列塔尼语、已灭亡的坎伯兰语、及假定曾存在的伊佛尼克语的布立吞亚支。而苏格兰盖尔语、爱尔兰语、及曼岛语则是属于另
  • 脱氨基脱氨作用(英语:deamination,亦可称为脱氨基)是指移除分子上的一个氨基。人类的肝脏经由脱氨作用将氨基酸分解,当氨基酸的氨基被去除之后,会转变成氨。由碳及氢所组成的残余部分,则
  • Besnoitia见内文贝诺孢子虫属(学名:Besnoitia),又名必斯内虫属,是原生生物的一种,属于顶复动物门的一个属,是一种寄生性动物,会造成许多畜牲生病。本属物种的生命周期大多数都是未知,特别是当
  • 正月初一正月初一朔,华夏新年首日,即“岁首”、“年节”、“元旦”。华夏历法一般以最接近立春之朔日(月缺之日)为正月初一,日期一般落在大寒至雨水(在西历1月21日至2月20日)之间。立春紧接
  • 巴黎索邦-西岱大学巴黎索邦-西岱大学(法语:Université Sorbonne-Paris-Cité)建于2010年,是法国巴黎的一个大学与院校共同体,成员包括巴黎和塞纳-圣但尼省的八所学校和五个研究机构。学校将于2020
  • 阿尼诺阿萨乡 (戈尔日县)坐标:44°45′N 23°29′E / 44.750°N 23.483°E / 44.750; 23.483阿尼诺阿萨乡(罗马尼亚语:Comuna Aninoasa, Gorj),是罗马尼亚的乡份,位于该国西南部,由戈尔日县负责管辖,面积92
  • 乔治·维利尔斯,第一代白金汉公爵乔治·维利尔斯(George Villiers,1592年8月28日-1628年8月23日)第一代白金汉公爵(1st Duke of Buckingham)英格兰政治家。1614年成为詹姆斯一世的宠臣,1616年任侍从长,1617年封伯爵,
  • 科尔科代科尔科代,满洲人,清朝政治人物、清朝兵部尚书。曾任工部左侍郎。康熙八年六月癸亥,接替噶褚哈,担任清朝兵部尚书,后解。由明珠接任。
  • 莱谢克·科拉科夫斯基莱谢克·科拉科夫斯基(波兰语:Leszek Kołakowski,1927年10月23日-2009年7月17日),波兰哲学家、思想史家。他以对马克思主义的批判性分析闻名,这一点集中表现在《马克思主义的主流