结构群的约化

✍ dations ◷ 2025-06-09 08:42:46 #流形上的结构,纤维丛,微分拓扑学,微分几何

数学中,特别是在主丛理论中,我们可问一个 G {\displaystyle G} -丛 与映射 → (不必是包含),结构群的约化(从 到 )是一个 -丛 B H {\displaystyle B_{H}}

注意到这不一定存在,如果存在也不必惟一。

作为一个实例,每个偶数维实向量空间是一个复向量空间的背景实空间:它有一个线性复结构。一个实向量空间有一个殆复结构当且仅当它是一个复向量丛的背景实丛。这是沿着包含 (,C) → (2,R) 的一个约化。

用转移映射的术语来说,一个 -丛可以约化当且仅当转移映射可以取值于 。注意术语约化可能有误导性:它暗示 是 的一个子群,这是通常的情形,但不是必须的(比如自旋流形):更准确的说法是一个提升。

更抽象地,“ 上 -丛”是 的一个函子:给定一个映射 → ,诱导一个从 -丛到 -丛的一个映射(见上)。-丛 结构群的约化选择一个 -丛使其像是 。

从 -丛到 -丛的包含映射一般不是满的也不是单的,故结构群不是总能约化,且如果可以时,约化也不必是惟一的。例如,不是每个流形是定向的,而可定向的流形恰有两个定向。

如果 是 的一个子李群,则在 -丛 到 的约化与 商去由 的作用得到的纤维丛 / 之整体截面之间有一个一一对应。具体地,纤维化 → / 是 / 上一个主 -丛。如果 σ : → / 是一个截面,则拉回丛 H = σ−1 是 的一个约化。

向量丛的一些例子,特别是一个流形的切丛]]:

许多几何结构强于 -结构;它们是具有一个可积性条件的 -结构。从而这样一个结构要求一个结构群的约化(可能有阻碍,见下),但这不是充足的。这样的例子包括复结构、辛结构(相对于殆复结构与殆辛结构)。

另一个例子关于叶状结构,这要求将切丛结构群约化为一个分块矩阵,以及一个可积性条件,于是便可用弗罗贝尼乌斯定理。

-丛由分类空间 分类,类似的 -丛由分类空间 分类,一个 -丛上的诱导 -结构对应于包含映射 B H B G {\displaystyle BH\to BG} -丛,结构群的约化之阻碍是 ξ {\displaystyle \xi } 作为一个到上纤维 B G / B H {\displaystyle BG/BH} 映射的类;结构群可以约化当且仅当 ξ ¯ {\displaystyle {\bar {\xi }}} 所在的类是零同伦的。

H G {\displaystyle H\to G} 是同伦等价的,上纤维可缩,从而结构群的约化没有阻碍,例如 O ( n ) G L ( n ) {\displaystyle O(n)\to GL(n)}

反之,由平凡群包含 e G {\displaystyle e\to G} 诱导的上纤维还是 B G {\displaystyle BG} ,故绝对平行(丛的平凡化)的阻碍是丛的类。

作为一个简单的例子,视一个 G {\displaystyle G} -空间为一点上的 G {\displaystyle G} -丛,将一个 G {\displaystyle G} -空间约化为 H {\displaystyle H} -空间没有阻碍。在此情形分类映射是零同伦,因定义域是一个点。从而“向量空间结构群的约化”没有任何阻碍;故任何向量空间有一个定向,等等。

相关

  • 杂家杂家是先秦时代学术思想中的九流十家之一。杂家之所以为杂家,是因为杂家不具有原创思想,而以取各家所长,避各家所短见长。杂家以《吕氏春秋》及《淮南子》为代表作。杂家的学者
  • 累犯累犯(recidivism),指由于故意犯罪曾受过一定的刑罚处罚的,在其刑罚执行完毕或被赦免以后,在法定期限内又故意犯一定之罪的罪犯。一般而言累犯者所犯罪行得到的刑罚会比一般的犯罪
  • span class=nowrapKsub3/subPOsub4/sub/span>磷酸钾是钾的磷酸盐,化学式为K3PO4,常见无水物和一水合物。磷酸钾可由磷酸铵((NH4)3PO4)和氯化钾(KCl)的复分解反应制得,溶解度较小的一者将沉淀:氢氧化钾和磷酸或磷酸二氢钾的反应
  • 鸢形六十面体在几何学中,鸢形六十面体(与五角化六十面体完全是不一样的两种多面体)是一种卡塔兰立体。由60个全等的筝形(亦称为鸢形)所组成,每个鸢形的长边与短边比为1:0.64208933503(短边比
  • 塔吉克塔吉克可以指:
  • 2015年东南亚运动会柬埔寨代表团1 以“高棉共和国”名义参赛柬埔寨代表团将参加2015年6月5日至6月15日的新加坡第二十八届东南亚运动会
  • 五木宽之五木寛之(日语:五木 寛之/いつき ひろゆき ,1932年9月30日-),旧姓松延,是日本小说家、随笔家、作词家。1932年,生于福冈县八女郡。出生之后全家搬去朝鲜,因为父亲工作的关系,全家曾搬
  • 詹姆斯·蓋斯科因-塞西爾,第四代索尔兹伯里侯爵詹姆斯·爱德华·休伯特·盖斯科因-塞西尔,第四代索尔兹伯里侯爵,KG,GCVO,CB,PC(James Edward Hubert Gascoyne-Cecil, 4th Marquess of Salisbury,1861年10月23日-1947年4月4日),英国
  • 安园大桥安园大桥位于河同铁路9.750km处,跨越红河三角洲主要支流之一的陇江(也称急流河、急流运河),是河同线上仅次于龙编桥的第二大桥。桥北1千米处即安园站,是河老铁路、河太铁路的出岔
  • 塔巴里斯坦塔巴里斯坦(现代波斯语:تاریخ تبرستان‎),又译泰百里斯坦,是伊朗历史上的一个地区,为里海南岸厄尔布尔士山脉的南北山麓,大致相当于今马赞德兰省,但也包括吉兰省、戈勒