结构群的约化

✍ dations ◷ 2025-04-02 18:19:40 #流形上的结构,纤维丛,微分拓扑学,微分几何

数学中,特别是在主丛理论中,我们可问一个 G {\displaystyle G} -丛 与映射 → (不必是包含),结构群的约化(从 到 )是一个 -丛 B H {\displaystyle B_{H}}

注意到这不一定存在,如果存在也不必惟一。

作为一个实例,每个偶数维实向量空间是一个复向量空间的背景实空间:它有一个线性复结构。一个实向量空间有一个殆复结构当且仅当它是一个复向量丛的背景实丛。这是沿着包含 (,C) → (2,R) 的一个约化。

用转移映射的术语来说,一个 -丛可以约化当且仅当转移映射可以取值于 。注意术语约化可能有误导性:它暗示 是 的一个子群,这是通常的情形,但不是必须的(比如自旋流形):更准确的说法是一个提升。

更抽象地,“ 上 -丛”是 的一个函子:给定一个映射 → ,诱导一个从 -丛到 -丛的一个映射(见上)。-丛 结构群的约化选择一个 -丛使其像是 。

从 -丛到 -丛的包含映射一般不是满的也不是单的,故结构群不是总能约化,且如果可以时,约化也不必是惟一的。例如,不是每个流形是定向的,而可定向的流形恰有两个定向。

如果 是 的一个子李群,则在 -丛 到 的约化与 商去由 的作用得到的纤维丛 / 之整体截面之间有一个一一对应。具体地,纤维化 → / 是 / 上一个主 -丛。如果 σ : → / 是一个截面,则拉回丛 H = σ−1 是 的一个约化。

向量丛的一些例子,特别是一个流形的切丛]]:

许多几何结构强于 -结构;它们是具有一个可积性条件的 -结构。从而这样一个结构要求一个结构群的约化(可能有阻碍,见下),但这不是充足的。这样的例子包括复结构、辛结构(相对于殆复结构与殆辛结构)。

另一个例子关于叶状结构,这要求将切丛结构群约化为一个分块矩阵,以及一个可积性条件,于是便可用弗罗贝尼乌斯定理。

-丛由分类空间 分类,类似的 -丛由分类空间 分类,一个 -丛上的诱导 -结构对应于包含映射 B H B G {\displaystyle BH\to BG} -丛,结构群的约化之阻碍是 ξ {\displaystyle \xi } 作为一个到上纤维 B G / B H {\displaystyle BG/BH} 映射的类;结构群可以约化当且仅当 ξ ¯ {\displaystyle {\bar {\xi }}} 所在的类是零同伦的。

H G {\displaystyle H\to G} 是同伦等价的,上纤维可缩,从而结构群的约化没有阻碍,例如 O ( n ) G L ( n ) {\displaystyle O(n)\to GL(n)}

反之,由平凡群包含 e G {\displaystyle e\to G} 诱导的上纤维还是 B G {\displaystyle BG} ,故绝对平行(丛的平凡化)的阻碍是丛的类。

作为一个简单的例子,视一个 G {\displaystyle G} -空间为一点上的 G {\displaystyle G} -丛,将一个 G {\displaystyle G} -空间约化为 H {\displaystyle H} -空间没有阻碍。在此情形分类映射是零同伦,因定义域是一个点。从而“向量空间结构群的约化”没有任何阻碍;故任何向量空间有一个定向,等等。

相关

  • 顺势疗法下面是以同治同疗法的介绍,于中文顺势二字无太多相关性,建议移除此条目。 同质疗法、同种疗法(英语:Homeopathy i/ˌhoʊmiˈɒpəθi/)为一
  • 工党劳工锡安主义(希伯来语:ציונות סוציאליסטית)是锡安主义运动的左翼派别,劳工锡安主义者视自己为历史上中东和中欧的犹太工人运动的一支;不同于主流政治上的锡安
  • 斯希丹斯希丹(荷兰语:Schiedam, 读音 帮助·信息)是荷兰南荷兰省的一座城市和基层政权。它是鹿特丹大都会区的一部分。该城位于鹿特丹西面,弗拉尔丁恩的东边,代尔夫特南边。它南与佩尔
  • 乔治六世乔治六世(英语:George VI,1895年12月14日-1952年2月6日),原名阿尔伯特·弗雷德里克·亚瑟·乔治(英语:Albert Frederick Arthur George),英国国王及众英联邦自治领皇帝,1936年12月12日
  • 硕士学位硕士(英语:Master's Degree)是一种研究生学位,拥有硕士学位者,通常象征掌握并专精于某一学术领域或职场专业。在主攻的学术领域中,合格的研究生必须要能同时了解学术理论与现实状
  • 张珮珊张珮珊(1975年6月3日-),前三立新闻台主播,前TVBS《新闻晚餐 搞懂新闻》主持人,和老公岑永康曾是TVBS知名夫妻档双主播,2001年与岑永康结婚,育有一子一女。电台颁奖典礼
  • 威尔伯·罗斯小威尔伯·路易斯·罗斯(英语:Wilbur Louis Ross Jr.;1937年11月28日-),美国投资家,擅长重组不同行业的破产企业,诸如,钢铁、煤矿、电信、跨国投资公司和纺织等行业,尤其精通杠杆收购
  • 高雅文化高雅文化, 亦称高级文化,是对于美学价值的体现,是指一般社会大众所认知的“艺术”,更常见是用来指称上流社会或知识阶层的文化 ,用来与民俗文化做区别, 从社会学的角度来看,高雅文
  • 亚希莫夫亚希莫夫(捷克语:Jáchymov;德语:Sankt Joachimsthal 或 Joachimsthal)是捷克的城镇,位于该国西北部,距离博日达尔7公里,由卡罗维发利州负责管辖,面积51.11平方公里,海拔高度672米,2006
  • 打孔带打孔带(英语:punched tape 或 perforated paper tape)是一种储存装置,由上面被打孔的长条纸组成。打孔带在现今已经过时,但在20世纪的很长一段时间中曾被广泛用来做电传打字机的