多物理场

✍ dations ◷ 2025-12-06 13:33:05 #计算物理学,数值分析

多物理场(英语:Multiphysics)为耦合有多个同时发生的物理场的过程或系统,以及对此类过程和系统的研究。作为一个跨学科的研究领域,多物理场涵盖了科学和工程当中的许多学科,是一种杂合了数学、物理、科学与工程应用以及数值分析的应用课题。其中,数学通常涉及偏微分方程和张量分析,而物理则指常见类型的物理场或者物理过程。多物理场的应用涉及一个或者多个以上的物理过程或者物理场,典型的应用包括土体固结理论理论、流体动力学模拟、电动力学应用、计算电磁场、传感器(如压电材料)的设计、流体-结构相互作用、多孔材料中的能源和气候变化研究等。

多物理场至今没有广为接受的定义。广义上,多物理场定义为同时设计多个物理模型或者多个物理现象的仿真,但引入“多个物理模型”使这个定义具有广泛的意义,但同时必须注意到这个定义有些自相矛盾,因为物理模型也可能包括了物理现象。COMSOL给出了一个更为狭义的多物理场的定义:多物理场包括耦合了多个物理现象的计算机仿真,以及针对多个相互作用的物理性质的研究。在另一个定义中,一个多物理场系统由多个受物理法则(如守恒定律)支配的部分组成,这个定义非常接近于COMSOL给出的定义,区别在于物理特性并不包括在内。在另一个更为严格的定义中,多物理场则被认为是那些包含耦合多相互作用的多个连续介质中物理现象的过程。在这个定义中,能够被在时间步上以显性方式实现的双向的信息传递则是一个必要的特征。基于上述各种定义,在最新的多物理场著作中多物理被定义为包含有两个或以上同时发生的物理场的的耦合过程或系统,以及针对这些过程和系统的研究 。

“多物理场”中的“物理”一词指的是“物理场”,多物理场即指多个物理场的共存。在物理学中,一个物理场指一个物理量的值在时间和空间中的分布,例如在气象云图中,矢量可以代表图中每一点的面风速度(包括速度和方向),这就可以理解为一个速度场。在另一个典型的例子中,一个电场可以被看作是一个从电荷中发散出的电场在空间的延展:空间中每一个点都可以有一个跟位置相关的物理量的值(如场强和电势)。如果将一个试验电荷放在这个电场,则颗粒会被与位置相关的场加速。可能归因于后面一个例子,物理学家倾向于将场理解为产生力的根源。

物理场的概念在大多数科学和工程学科都有使用,但一个学科或者子学科通常只关注某一类物理场,因此多物理场成为了一个极为交叉的学科。多物理场通常使用合成词汇来表示。

传热、孔隙水流动、浓度场、压力应变场、动力学场、化学场、静电场和静磁场几种物理场理论上可以组合成247种不同的多物理场类型,但多物理场并非只是单个物理场的排列组合,多物理场的研究更多基于某个多物理场类型在实际中的普遍性和价值。侧重多孔介质的情况下,最常见的多物理场有如下几种 :

多物理场的实践应先确定一个多物理场的过程或者系统,然后建立一个对这个过程或者系统的数学描述,继而离散化数学模型,最后求解数学离散而得的代数方程并将结果处理。多物理场分析过程与一般的数值分析过程是非常相近的。

数学模型实际上就是很多方程的集合。在以孔隙水为代表的守恒类问题中,以下包括多种迁移机制的控制方程通常用于描述物理过程:

u t A c c u m u l a t i o n + ( u v ) A d v e c t i o n ( K u ) D i f f u s i o n ( C o n d u c t i o n ) ( D u ) D i s p e r s i o n = Q S o u r c e {\displaystyle {\underbrace {\frac {\partial u}{\partial t}} _{\rm {Accumulation}}\underbrace {+\nabla \cdot \left(uv\right)} _{\rm {Advection}}\underbrace {-\nabla \cdot \left(K\nabla u\right)} _{{\rm {Diffusion\;}}\left({\rm {Conduction}}\right)}\underbrace {-\nabla \cdot \left(D\nabla u\right)} _{\rm {Dispersion}}=\underbrace {Q} _{\rm {Source}}}}

上述守恒方程可以用于描述质量、动量、能量等满足守恒定律的物理量。

离散化是建立数学模型后的下一个步骤,要求将数学模型中继续连续函数的描述离散为以下代数方程:

K u = F {\displaystyle \mathrm {K} \cdot \mathrm {u} =\mathrm {F} }

其中 K {\displaystyle \mathrm {K} } 是的刚性矩阵、 u {\displaystyle \mathrm {u} } 是未知数矩阵、 F {\displaystyle \mathrm {F} } 是的力矩阵。以上代数方程可以使用多种离散方法进行离散化。在多物理场研究当中,最常见的离散方法有有限差分法、有限体积法和有限单元法。这些离散方法之间有着较为明显的区别,有各自的优缺点和应用范围。

离散后所得的代数方程的求解可以使用多种直接法和迭代法实现。相对于网格划分、在有限的计算时间内求解出可接受的误差内的解往往更加困难。这涉及到求解参数和求解方法的选择,同时也与离散和数学模型息息相关。多物理场分析的最后一个环节是后处理,这通常要求将所模拟的场或者其他物理量以二维或者三维图像的方式呈现出来。此外,误差分析和敏感性分析也是后处理中常常不可或缺的环节,误差分析有助于选择合适的网格,而敏感性分析有助于理解所求解的解的形状、代码中隐藏的错误和模型定义中存在的问题。

相关

  • Verizon Communications威瑞森通信(Verizon Communications(/vəˈraɪzən/),NYSE:VZ),是美国一家主要电信公司,全球领先的宽带和电信服务提供商,道琼斯30种工业平均指数组成之一。公司总部位于纽约市,主要
  • 速率速率(英语:Speed)是物理学中的一个基本概念,是指物体在单位时间内经过的路程,用来表示物体运动的快慢程度。在日常生活中,“速率”和“速度”混用,但两者在物理学中对应着不同的概
  • 赫农王希伦二世 (希腊语:Ἱέρων Β΄; 前307年 – 前215年),是西西里的希腊人。伊庇鲁斯联军统帅皮洛士远征西西里迦太基人时,担任他的部将。随着皮洛士离开西西里返国,希伦被叙拉古
  • 波斯文学波斯文学(波斯语:ادبیات فارسی‎ adabiyāt-e fārsi)包括由波斯语转述、写作而成的文字作品,是世界上最为古老的文学之一。它绵延了两千五百余年,但许多 伊朗历史相
  • 静电验电器静电验电器(versorium)是最早出现的一种简单的验电器,能够侦测到静电荷的存在。静电验电器是由英国女王伊丽莎白一世的医生威廉·吉尔伯特于1600年所发明。
  • BBC电视中心伦敦电视中心(英语:Television Centre),前称BBC电视中心(英语:Television Centre),是一处位于英国伦敦的媒体大楼,建成于1960年,曾完全用于英国广播公司。BBC电视中心曾经是世界最大的
  • 坦苏·奇莱尔坦苏·奇莱尔(Tansu Çiller,1946年4月24日-) 土耳其的经济学者、政治家。正确道路党党首,土耳其共和国第一位女性总理(在任1993年6月-1995年9月、1995年11月-1995年12月)。奇莱尔194
  • 查理·亚历山大 (洛林)夏尔·亚历山大,(Charles-Alexandre de Lorraine ,1712年12月12日-1780年7月4日),又名卡尔·亚历山大,洛林公爵利奥波德·约瑟夫(英语:Leopold, Duke of Lorraine)之子, 弗朗茨一世之弟
  • 西国筋郡代西国筋郡代(日语:西国筋郡代/さいごくすじぐんだい  ?)是江户幕府设置的4所郡代(日语:郡代)之一。别称西国郡代。负责九州江户幕府直辖领(天领)民治的行政官、代官(日语:代官),管辖16万
  • 青邱图青邱图(청구도)又称青邱线表图(청구선표도),是朝鲜王朝地理学家、地图学家金正浩绘制的韩半岛地图,制成于1834年。它为金正浩后续作品《大东舆地图》打下了重要基础。现为大韩民国