引导影像滤波器

✍ dations ◷ 2025-04-04 12:13:59 #非线性滤波器,图像处理,计算机图形学

在图像处理上,引导影像滤波器(英语:Guided Image Filter)是一种能使影像平滑化的非线性滤波器。

与双边滤波器(Bilateral Filter)相同,这个影像滤波器同样能够在清楚保持影像边界的情况下,达到让影像平滑的效果。

但不同于双边滤波器,引导影像滤波器有两个优点:首先,双边滤波器有非常大的计算复杂度,但引导影像滤波器因为并未用到过于复杂的数学计算,有线性的计算复杂度。再来,双边滤波器因为数学模型的缘故,在某些时候会发生梯度反转(gradient reverse)的状况,出现影像有损;而在引导影像滤波器,因为这个滤波器在数学上以线性组合为基础出发,输出图片(Output Image)必与引导图片(Guidance Image)的梯度方向一致,并不会出现梯度反转的问题。

为了达到将影像平滑化、即去除噪声的效果,首先定义输出的结果图片是输入图片减去噪声后的结果;同时,为了让输出的图片符合引导图片的影像边界,将输出图片定为引导图片的线性组合。

以下为引导影像滤波器的基础模型:


(1)   q i = p i n i {\displaystyle q_{i}=p_{i}-n_{i}}

(2)   q i = a I i + b {\displaystyle q_{i}=aI_{i}+b}


在上述公式中, q i {\displaystyle q_{i}} 是第i个输出的像素, p i {\displaystyle p_{i}} 是第i个输入的像素, n i {\displaystyle n_{i}} 是第i个输入像素的噪声成分, I i {\displaystyle I_{i}} 是第i个引导图片的像素, a , b {\displaystyle a,b} 则是用来衡量输入权重的参数。


定义为线性组合(Linear Combination)的原因在于,一对象的边界与其梯度(Gradient)相关,而在线性组合的定义下,输出图片之梯度必与引导图片之梯度成对比(微分时高幂次系数保留而常量项则被去除),故可以达到保留梯度的效果、保留影像边界的目的。

为了导出上述线性组合的参数,将(1)及(2)相减得到公式(3);同时,定义一个代价方程式(cost function)(4):


(3)   n i = p i a I i b {\displaystyle n_{i}=p_{i}-aI_{i}-b}

(4)   E ( a k , b k ) = i ϵ ω k ( ( a k I i + b k p i ) 2 + ϵ a k 2 ) {\displaystyle E(a_{k},b_{k})=\sum _{i{\epsilon }{\omega }_{k}}^{}((a_{k}I_{i}+b_{k}-p{i})^{2}+{\epsilon }a_{k}^{2})}


在上式中, ϵ {\displaystyle \epsilon } 是一用来惩罚(penalize)过大的 a k {\displaystyle a_{k}} 的参数, ω k {\displaystyle \omega _{k}} 是以第 k {\displaystyle k} 个像素为中心点的窗格(window)。

在这个方程式中可以看到,希望同时让最终的输出图片做到让噪声减少以及让引导图片在输出图片的影响减小(引导图片的系数项)两件事,遂定义每个像素噪声和系数项的平方总合为最后须付出的价值项(cost)。并且,基于让价值项最小化的原则,可以将(4)以线性回归(linear regression)的方法找出它的线性模型,从而求得、使得出它的价值方程式有最小解的到以下两参数 a k {\displaystyle a_{k}} b k {\displaystyle b_{k}}


(5)   a k = 1 ω i ϵ ω k I i p i μ k p k ¯ σ k 2 + ϵ {\displaystyle a_{k}={\frac {{\frac {1}{\omega }}\sum _{i\epsilon \omega _{k}}I_{i}p_{i}-\mu _{k}{\bar {p_{k}}}}{\sigma _{k}^{2}+\epsilon }}}

(6)   b k = p k ¯ a k μ k {\displaystyle b_{k}={\bar {p_{k}}}-a_{k}\mu _{k}}


在这里, μ k {\displaystyle \mu _{k}} σ k 2 {\displaystyle \sigma _{k}^{2}} 分别是引导图片 I {\displaystyle I} 在窗格 ω k {\displaystyle \omega _{k}} 的平均数(mean)和标准差(variance),而 p ¯ k = 1 | ω | i ϵ ω k p i {\displaystyle {\bar {p}}_{k}={\frac {1}{\left|\omega \right|}}\sum _{i\epsilon \omega _{k}}p_{i}} 是在窗格 ω i {\displaystyle \omega _{i}} 中像素的平均值;这两项系数,换句话说,即是一以输入图片为考虑计算权重之平均滤波器(weighted mean)。

依据上式,可以列出此滤波器之算法:


Algorithm 1. 引导图片滤波器

输入: 输入图片 p {\displaystyle p} ,引导图片 I {\displaystyle I} ,窗格半径 r {\displaystyle r} ,修正项 ϵ {\displaystyle \epsilon }

输出: 输出图片 q {\displaystyle q}

第一部分

                    m        e        a                  n                      I                                {\displaystyle mean_{I}}   =                               f                      m            e            a            n                          (        I        )              {\displaystyle f_{mean}(I)}                      m        e        a                  n                      p                                {\displaystyle mean_{p}}   =                               f                      m            e            a            n                          (        p        )              {\displaystyle f_{mean}(p)}                      c        o        r                  r                      I                                {\displaystyle corr_{I}}   =                               f                      m            e            a            n                          (        I        .                I        )              {\displaystyle f_{mean}(I.*I)}                      c        o        r                  r                      I            p                                {\displaystyle corr_{Ip}}   =                               f                      m            e            a            n                          (        I        .                p        )              {\displaystyle f_{mean}(I.*p)}  

第二部分

                    v        a                  r                      I                                {\displaystyle var_{I}}   =                     c        o        r                  r                      I                                  m        e        a                  n                      I            .                                  m        e        a                  n                      I                                {\displaystyle corr_{I}-mean_{I.}*mean_{I}}                      c        o                  v                      I            p                                {\displaystyle cov_{Ip}}   =                     c        o        r                  r                      I            p                                  m        e        a                  n                      I            .                                  m        e        a                  n                      p                                {\displaystyle corr_{Ip}-mean_{I.}*mean_{p}}  

第三部分

                    a              {\displaystyle a}   =                     c        o                  v                      I            p                          .                  /                (        v        a                  r                      I                          +        ϵ        )              {\displaystyle cov_{Ip}./(var_{I}+\epsilon )}                      b              {\displaystyle b}   =                     m        e        a                  n                      p                                  a        .                m        e        a                  n                      I                                {\displaystyle mean_{p}-a.*mean_{I}}  

第四部分

                    m        e        a                  n                      a                                {\displaystyle mean_{a}}   =                               f                      m            a            e            a            n                          (        a        )              {\displaystyle f_{maean}(a)}                      m        e        a                  n                      b                                {\displaystyle mean_{b}}   =                               f                      m            a            e            a            n                          (        b        )              {\displaystyle f_{maean}(b)}  

第五部分

                    q              {\displaystyle q}   =                     m        e        a                  n                      a            .                                  I        +        m        e        a                  n                      b                                {\displaystyle mean_{a.}*I+mean_{b}}  

/* f m e a n {\displaystyle f_{mean}} 是一个有线性计算复杂度的平均滤波器(mean filter)*/

引导图片滤波器保留边界的特性,其实也可以被理解为是保留梯度的特性。由下图可以看到,可以将一张图分为细节图层和基底图层两层,基底图层的能量并无小幅度的升降,只有大幅度诸入梯度的能量升降;而细节图层,只有噪声式的小幅度能量升降。而引导图片滤波器所作的,其实就是将细节层和基底层分离并保留基底层,也就是保留梯度而去除噪声,达到平滑效果。

由引导图片滤波器的特性,可以延伸出除了原先的平滑化外的几项功能

当一影像图同时为输出图片和引导图片时,可知最终得到的会是以该图片的边界为依据的基底层和细节层;因此,若要加强依影像之细节,可以将细节层的能量放大n倍后再次叠加回基底层,以达到增强细节的效果。

无论是利用光场(light field)技术或是焦点合成(focal-stack)所制作的深度图(depth map),在出制作完成时往往都会有一些坑洞(holo);而这时若使用引导影像滤波器,以原始影像为引导图片、以深度图为输入图片,便可得到一完整、无坑洞的深度图。

相关

  • 行为经济学行为经济学(英语:Behavioral economics),经济学的一个分支,承袭经验主义,并受到心理学与认知科学的影响,探讨社会、认知与情感的因素,与个人及团体形成经济决策的背后原因,并从而了解
  • 先验先验(拉丁语:a priori;也译作 先天)在拉丁文中指“来自先前的东西”,或引申为“有经验之前”。近代西方传统中,认为先验指无需经验或先于经验获得的知识。它通常与后验知识相比较,
  • 耶稣升天节耶稣升天节是纪念基督耶稣在复活四十日后升天一事。这在《使徒信经》和《尼西亚信经》都得以确认。由于复活节在星期日,故本节在星期四庆祝。
  • 圣巴托洛缪大屠杀圣巴多罗买大屠杀(法语:Massacre de la Saint-Barthélemy),又称圣巴多罗买之夜、圣巴多罗买节大屠杀,发生于1572年法国宗教战争期间,由宫廷内部针对新教结盟宗新教徒(又称雨格诺派
  • 伊戈尔·塔姆伊戈尔·叶夫根耶维奇·塔姆(俄语:И́горь Евге́ньевич Та́мм,1895年7月8日-1971年4月12日),苏联物理学家,生于海参崴。由于在1934年发现契忍可夫辐射,塔姆在1
  • 最高点各国最高点列表罗列各主权国家和境外领土在海平面以上的最高点。以下包括国际标准化组织的ISO 3166-1国际标准所列地区。
  • 群山机场群山机场(朝鲜语:군산공항/群山空港 Gunsan Gonghang */?,IATA代码:KUV;ICAO代码:RKJK)是一座位于大韩民国全罗北道群山市的军民两用机场,使用单位包括了大韩民国空军和驻韩美军,军
  • 沃纳·亚伯沃纳·亚伯(Werner Arber,1929年6月3日-)是一位瑞士微生物学家及遗传学家。因限制酶的发现,而于1978年与美国的丹尼尔·那森斯(Daniel Nathans)及汉弥尔顿·史密斯(Hamilton Smith),共
  • 何赛·费尔南德斯何赛·费尔南德斯 (西班牙语:José D. Fernández,1992年7月31日-2016年9月25日),是一位古巴裔美国籍的职业棒球员,曾效力于美国职棒大联盟迈阿密马林鱼队,守备位置为投手,右投右打,为
  • 郈邑故城郈邑故城位于山东省东平县彭集街道后亭村,为东平县县级文物保护单位。郈邑故城是一个周代古聚落遗址,也是为春秋时鲁叔孙私邑。后亭村座落在遗址之上,2—5米以下为文化层,曾出土