首页 >
自旋-轨道作用
✍ dations ◷ 2025-09-05 02:12:38 #自旋-轨道作用
在量子力学里,一个粒子因为自旋与轨道运动而产生的作用,称为自旋-轨道作用(英语:Spin–orbit interaction),也称作自旋-轨道效应或自旋-轨道耦合。最著名的例子是电子能级的位移。电子移动经过原子核的电场时,会产生电磁作用.电子的自旋与这电磁作用的耦合,形成了自旋-轨道作用。谱线分裂实验明显地侦测到电子能级的位移,证实了自旋-轨道作用理论的正确性。另外一个类似的例子是原子核壳层模型能级的位移。半导体或其它新颖材料常常会涉及电子的自旋-轨道效应。自旋电子学专门研究与应用这方面的问题。在这篇文章里,会以相当简单与公式化的方式,详细地讲解一个束缚于原子内的电子的自旋-轨道作用理论。这会用到电磁学、非相对论性量子力学、一阶摄动理论。这自旋-轨道作用理论给出的答案,虽然与实验结果并不完全相同,但相当的符合。更严谨的导引应该从狄拉克方程开始,也会求得相同的答案。若想得到更准确的答案,则必须用量子电动力学来计算微小的修正。这两种方法都在本条目范围之外。虽然在原子核的静止参考系 (rest frame) ,并没有作用在电子上的磁场;在电子的静止参考系,有作用在电子上的磁场存在。暂时假设电子的静止参考系为惯性参考系,则根据狭义相对论,磁场
B
{displaystyle mathbf {B} ,!}
是其中,
v
{displaystyle mathbf {v} ,!}
是电子的速度,
E
{displaystyle mathbf {E} ,!}
是电子运动经过的电场,
c
{displaystyle c,!}
是光速。以质子的位置为原点,则从质子产生的电场是其中,
Z
{displaystyle Z,!}
是质子数量(原子序数),
e
{displaystyle e,!}
是单位电荷量,
ϵ
0
{displaystyle epsilon _{0},!}
是真空电容率,
r
^
{displaystyle {hat {r}},!}
是径向单位矢量,
r
{displaystyle r,!}
是径向距离,径向矢量
r
{displaystyle mathbf {r} ,!}
是电子的位置。电子的动量
p
{displaystyle mathbf {p} ,!}
是其中,
m
{displaystyle m,!}
是电子的质量。所以,作用于电子的磁场是其中,
L
{displaystyle mathbf {L} ,!}
是角动量,
L
=
r
×
p
{displaystyle mathbf {L} =mathbf {r} times mathbf {p} ,!}
。B
{displaystyle mathbf {B} ,!}
是一个正值因子乘以
L
{displaystyle mathbf {L} ,!}
,也就是说,磁场与电子的轨道角动量平行。电子的磁矩
μ
{displaystyle {boldsymbol {mu }},!}
是其中,
γ
=
g
s
q
e
2
m
{displaystyle gamma ={frac {g_{s}q_{e}}{2m}},!}
是回转磁比率 (gyromagnetic ratio) ,
S
{displaystyle mathbf {S} ,!}
是自旋角动量,
g
s
{displaystyle g_{s},!}
是电子自旋g因数,
q
e
{displaystyle q_{e},!}
是电荷量。电子的g-因数(g-factor)是
2
{displaystyle 2,!}
,电荷量是
−
e
{displaystyle -e,!}
。所以,电子的磁矩与自旋反平行。自旋-轨道作用的哈密顿量摄动项目是代入
μ
{displaystyle {boldsymbol {mu }},!}
的公式 (3) 和
B
{displaystyle mathbf {B} ,!}
的公式(2),经过一番运算,可以得到一直到现在,都还没有考虑到电子静止坐标乃非惯性坐标。这事实引发的效应称为托马斯进动 (Thomas precession) 。因为这效应,必须添加因子
1
/
2
{displaystyle 1/2,!}
在公式里。所以,在准备好了自旋-轨道作用的哈密顿量摄动项目以后,现在可以估算这项目会造成的能量位移。特别地,想要找到
H
0
{displaystyle H_{0},!}
的本征函数形成的基底,使
H
′
{displaystyle H',!}
能够对角化。为了找到这基底,先定义总角动量算符
J
{displaystyle mathbf {J} ,!}
:总角动量算符与自己的内积是所以,请注意
H
′
{displaystyle H',!}
与
L
{displaystyle mathbf {L} ,!}
互相不对易,
H
′
{displaystyle H',!}
与
S
{displaystyle mathbf {S} ,!}
互相不对易。读者可以很容易地证明这两个事实。由于这两个事实,
H
0
{displaystyle H_{0},!}
与
L
{displaystyle mathbf {L} ,!}
的共同本征函数不能被当做零摄动波函数,用来计算一阶能量位移
E
(
1
)
{displaystyle E^{(1)},!}
。
H
0
{displaystyle H_{0},!}
与
S
{displaystyle mathbf {S} ,!}
的共同本征函数也不能被当做零摄动波函数,用来计算一阶能量位移
E
(
1
)
{displaystyle E^{(1)},!}
。可是,
H
′
{displaystyle H',!}
、
J
2
{displaystyle J^{2},!}
、
L
2
{displaystyle L^{2},!}
、
S
2
{displaystyle S^{2},!}
,这四个算符都互相对易。
H
0
{displaystyle H_{0},!}
、
J
2
{displaystyle J^{2},!}
、
L
2
{displaystyle L^{2},!}
、
S
2
{displaystyle S^{2},!}
,这四个算符也都互相对易。所以,
H
0
{displaystyle H_{0},!}
、
J
2
{displaystyle J^{2},!}
、
L
2
{displaystyle L^{2},!}
、
S
2
{displaystyle S^{2},!}
,这四个算符的共同本征函数
|
n
,
j
,
l
,
s
⟩
{displaystyle |n,j,l,srangle ,!}
可以被当做零摄动波函数,用来计算一阶能量位移
E
n
(
1
)
{displaystyle E_{n}^{(1)},!}
;其中,
n
{displaystyle n,!}
是主量子数,
j
{displaystyle j,!}
是总角量子数,
l
{displaystyle l,!}
是角量子数,
s
{displaystyle s,!}
是自旋量子数。这一组本征函数所形成的基底,就是想要寻找的基底。这共同本征函数
|
n
,
j
,
l
,
s
⟩
{displaystyle |n,j,l,srangle ,!}
的
L
⋅
S
{displaystyle mathbf {L} cdot mathbf {S} ,!}
的期望值是其中,电子的自旋
s
=
1
/
2
{displaystyle s=1/2,!}
。经过一番繁琐的运算,可以得到
r
−
3
{displaystyle r^{-3},!}
的期望值其中,
a
0
=
4
π
ϵ
0
ℏ
2
m
e
2
{displaystyle a_{0}={frac {4pi epsilon _{0}hbar ^{2}}{me^{2}}},!}
是玻尔半径。将这两个期望值的公式代入,能级位移是经过一番运算,可以得到其中,
E
n
(
0
)
=
Z
2
ℏ
2
2
m
a
0
2
n
2
{displaystyle E_{n}^{(0)}={frac {Z^{2}hbar ^{2}}{2ma_{0}^{2}n^{2}}},!}
是主量子数为
n
{displaystyle n,!}
的零摄动能级。特别注意,当
l
=
0
{displaystyle l=0,!}
时,这方程会遇到除以零的不可定义运算;虽然分子项目
j
(
j
+
1
)
−
l
(
l
+
1
)
−
3
/
4
=
0
{displaystyle j(j+1)-l(l+1)-3/4=0,!}
也等于零。零除以零,仍旧无法计算这方程的值。很幸运地,在精细结构能量摄动的计算里,这不可定义问题自动地会消失。事实上,当
l
=
0
{displaystyle l=0,!}
时,电子的轨道运动是球对称的。这可以从电子的波函数的角部分观察出来,
l
=
0
{displaystyle l=0,!}
球谐函数是由于完全跟角度无关,角动量也是零,电子并不会感觉到任何磁场,所以,电子的
l
=
0
{displaystyle l=0,!}
轨道没有自旋-轨道作用。
相关
- 缩写缩写(英语:Abbreviation(Abbrev),来自拉丁语 brevis,意为“短”),在语言学里是一种词语或短语的简易形式,又称省略、缩略语、缩写词。缩写大部分时候等同于简称,但它们之间有细微的差
- 氟氧头孢氟氧头孢(英语:Flomoxef,INN) 是一种头孢菌素类的抗生素,属于氧头孢烯(英语:oxacephem)。氟氧头孢曾被分类为第二代及第四代的头孢菌素。相较于其他的传统头孢菌素,其还增加对厌氧菌
- 脊髓灰质炎脊髓灰质炎疫苗(英语:Polio vaccines)又称小儿麻痹疫苗。是一种用来对抗脊髓灰质炎(小儿麻痹)的疫苗,世界上主要通用类型有两大类。第一类是由乔纳斯·爱德华·索尔克所研发出来的
- 西帝国西罗马帝国是罗马帝国于286年被戴克里先分为两部分后把政权一分为二建立四帝共治制从而开始有的东西两部的概念,位处西部的部分即是最后分裂的西罗马帝国;而东部最后则成为东
- 黽黾部,为汉字索引中的部首之一,康熙字典214个部首中的第二百〇五个(十三划的则为第一个)。就正体中文中,黾部归于十三划部首,而简体中文则归在八划。黾部只以下方为部字。且无其他
- 磁性材料磁铁或称磁石,是可以吸引铁并于其外产生磁场的物体。狭义的磁铁指磁铁矿石的制品,广义的磁铁指的是用途为产生磁场的物体或装置。磁铁作为磁偶极子,能够吸引铁磁性物质,例如铁、
- 变性 (消歧义)变性可以指:
- 舌诊中医的舌诊是通过观察舌象了解集体的生理功能变化和病理变化的方法,也是中医辨证论治的依据之一。舌诊具有模糊性,完全依靠医生个人的经验观察来判断,没有精确、定量的标准。
- 抢劫罪抢劫,亦称打劫、行抢,是指以暴力或威吓,夺取对方对某物之所有权的一种犯罪行为。抢劫是对他人的财产权、人身安全的严重侵害,也彻底背弃人类文明价值,因此各国的刑罚皆极重。。进
- 张景岳张介宾(1563年-1642年),字景岳,又字会卿,别号通一子,会稽山阴(今浙江绍兴)人,明末医学大家。张介宾祖籍四川绵竹。明朝初年,张家因军功而世袭绍兴卫指挥使,“食禄千户” ,故移居会稽城东