首页 >
自旋-轨道作用
✍ dations ◷ 2025-01-23 03:14:14 #自旋-轨道作用
在量子力学里,一个粒子因为自旋与轨道运动而产生的作用,称为自旋-轨道作用(英语:Spin–orbit interaction),也称作自旋-轨道效应或自旋-轨道耦合。最著名的例子是电子能级的位移。电子移动经过原子核的电场时,会产生电磁作用.电子的自旋与这电磁作用的耦合,形成了自旋-轨道作用。谱线分裂实验明显地侦测到电子能级的位移,证实了自旋-轨道作用理论的正确性。另外一个类似的例子是原子核壳层模型能级的位移。半导体或其它新颖材料常常会涉及电子的自旋-轨道效应。自旋电子学专门研究与应用这方面的问题。在这篇文章里,会以相当简单与公式化的方式,详细地讲解一个束缚于原子内的电子的自旋-轨道作用理论。这会用到电磁学、非相对论性量子力学、一阶摄动理论。这自旋-轨道作用理论给出的答案,虽然与实验结果并不完全相同,但相当的符合。更严谨的导引应该从狄拉克方程开始,也会求得相同的答案。若想得到更准确的答案,则必须用量子电动力学来计算微小的修正。这两种方法都在本条目范围之外。虽然在原子核的静止参考系 (rest frame) ,并没有作用在电子上的磁场;在电子的静止参考系,有作用在电子上的磁场存在。暂时假设电子的静止参考系为惯性参考系,则根据狭义相对论,磁场
B
{displaystyle mathbf {B} ,!}
是其中,
v
{displaystyle mathbf {v} ,!}
是电子的速度,
E
{displaystyle mathbf {E} ,!}
是电子运动经过的电场,
c
{displaystyle c,!}
是光速。以质子的位置为原点,则从质子产生的电场是其中,
Z
{displaystyle Z,!}
是质子数量(原子序数),
e
{displaystyle e,!}
是单位电荷量,
ϵ
0
{displaystyle epsilon _{0},!}
是真空电容率,
r
^
{displaystyle {hat {r}},!}
是径向单位矢量,
r
{displaystyle r,!}
是径向距离,径向矢量
r
{displaystyle mathbf {r} ,!}
是电子的位置。电子的动量
p
{displaystyle mathbf {p} ,!}
是其中,
m
{displaystyle m,!}
是电子的质量。所以,作用于电子的磁场是其中,
L
{displaystyle mathbf {L} ,!}
是角动量,
L
=
r
×
p
{displaystyle mathbf {L} =mathbf {r} times mathbf {p} ,!}
。B
{displaystyle mathbf {B} ,!}
是一个正值因子乘以
L
{displaystyle mathbf {L} ,!}
,也就是说,磁场与电子的轨道角动量平行。电子的磁矩
μ
{displaystyle {boldsymbol {mu }},!}
是其中,
γ
=
g
s
q
e
2
m
{displaystyle gamma ={frac {g_{s}q_{e}}{2m}},!}
是回转磁比率 (gyromagnetic ratio) ,
S
{displaystyle mathbf {S} ,!}
是自旋角动量,
g
s
{displaystyle g_{s},!}
是电子自旋g因数,
q
e
{displaystyle q_{e},!}
是电荷量。电子的g-因数(g-factor)是
2
{displaystyle 2,!}
,电荷量是
−
e
{displaystyle -e,!}
。所以,电子的磁矩与自旋反平行。自旋-轨道作用的哈密顿量摄动项目是代入
μ
{displaystyle {boldsymbol {mu }},!}
的公式 (3) 和
B
{displaystyle mathbf {B} ,!}
的公式(2),经过一番运算,可以得到一直到现在,都还没有考虑到电子静止坐标乃非惯性坐标。这事实引发的效应称为托马斯进动 (Thomas precession) 。因为这效应,必须添加因子
1
/
2
{displaystyle 1/2,!}
在公式里。所以,在准备好了自旋-轨道作用的哈密顿量摄动项目以后,现在可以估算这项目会造成的能量位移。特别地,想要找到
H
0
{displaystyle H_{0},!}
的本征函数形成的基底,使
H
′
{displaystyle H',!}
能够对角化。为了找到这基底,先定义总角动量算符
J
{displaystyle mathbf {J} ,!}
:总角动量算符与自己的内积是所以,请注意
H
′
{displaystyle H',!}
与
L
{displaystyle mathbf {L} ,!}
互相不对易,
H
′
{displaystyle H',!}
与
S
{displaystyle mathbf {S} ,!}
互相不对易。读者可以很容易地证明这两个事实。由于这两个事实,
H
0
{displaystyle H_{0},!}
与
L
{displaystyle mathbf {L} ,!}
的共同本征函数不能被当做零摄动波函数,用来计算一阶能量位移
E
(
1
)
{displaystyle E^{(1)},!}
。
H
0
{displaystyle H_{0},!}
与
S
{displaystyle mathbf {S} ,!}
的共同本征函数也不能被当做零摄动波函数,用来计算一阶能量位移
E
(
1
)
{displaystyle E^{(1)},!}
。可是,
H
′
{displaystyle H',!}
、
J
2
{displaystyle J^{2},!}
、
L
2
{displaystyle L^{2},!}
、
S
2
{displaystyle S^{2},!}
,这四个算符都互相对易。
H
0
{displaystyle H_{0},!}
、
J
2
{displaystyle J^{2},!}
、
L
2
{displaystyle L^{2},!}
、
S
2
{displaystyle S^{2},!}
,这四个算符也都互相对易。所以,
H
0
{displaystyle H_{0},!}
、
J
2
{displaystyle J^{2},!}
、
L
2
{displaystyle L^{2},!}
、
S
2
{displaystyle S^{2},!}
,这四个算符的共同本征函数
|
n
,
j
,
l
,
s
⟩
{displaystyle |n,j,l,srangle ,!}
可以被当做零摄动波函数,用来计算一阶能量位移
E
n
(
1
)
{displaystyle E_{n}^{(1)},!}
;其中,
n
{displaystyle n,!}
是主量子数,
j
{displaystyle j,!}
是总角量子数,
l
{displaystyle l,!}
是角量子数,
s
{displaystyle s,!}
是自旋量子数。这一组本征函数所形成的基底,就是想要寻找的基底。这共同本征函数
|
n
,
j
,
l
,
s
⟩
{displaystyle |n,j,l,srangle ,!}
的
L
⋅
S
{displaystyle mathbf {L} cdot mathbf {S} ,!}
的期望值是其中,电子的自旋
s
=
1
/
2
{displaystyle s=1/2,!}
。经过一番繁琐的运算,可以得到
r
−
3
{displaystyle r^{-3},!}
的期望值其中,
a
0
=
4
π
ϵ
0
ℏ
2
m
e
2
{displaystyle a_{0}={frac {4pi epsilon _{0}hbar ^{2}}{me^{2}}},!}
是玻尔半径。将这两个期望值的公式代入,能级位移是经过一番运算,可以得到其中,
E
n
(
0
)
=
Z
2
ℏ
2
2
m
a
0
2
n
2
{displaystyle E_{n}^{(0)}={frac {Z^{2}hbar ^{2}}{2ma_{0}^{2}n^{2}}},!}
是主量子数为
n
{displaystyle n,!}
的零摄动能级。特别注意,当
l
=
0
{displaystyle l=0,!}
时,这方程会遇到除以零的不可定义运算;虽然分子项目
j
(
j
+
1
)
−
l
(
l
+
1
)
−
3
/
4
=
0
{displaystyle j(j+1)-l(l+1)-3/4=0,!}
也等于零。零除以零,仍旧无法计算这方程的值。很幸运地,在精细结构能量摄动的计算里,这不可定义问题自动地会消失。事实上,当
l
=
0
{displaystyle l=0,!}
时,电子的轨道运动是球对称的。这可以从电子的波函数的角部分观察出来,
l
=
0
{displaystyle l=0,!}
球谐函数是由于完全跟角度无关,角动量也是零,电子并不会感觉到任何磁场,所以,电子的
l
=
0
{displaystyle l=0,!}
轨道没有自旋-轨道作用。
相关
- 细胞程序性死亡细胞程序性死亡(Programmed cell death)是一种多细胞生物中的细胞按照预定的程序集体自杀的行为。它包括细胞凋亡和自噬两类。细胞程序性死亡与细胞坏死不同。
- 海洋性贫血地中海贫血(Thalassemias),又称珠蛋白生成障碍性贫血,海洋性贫血症,简称地贫,是遗传性血液疾病,会造成血红蛋白合成障碍,其症状可依不同分型而有所不同,程度可能从无症状到严重。通常
- 表现主义表现主义(法语:Expressionnisme)是20世纪初流行于法国、德国、奥地利、北欧和俄罗斯的文学和艺术流派。1901年法国画家 朱利安·奥古斯特·埃尔韦为表明自己绘画有别于印象派而
- 威廉·哈维威廉·哈维(英语:William Harvey,1578年4月1日-1657年6月3日) 英国医生,实验生理学的创始人之一。他根据实验,证实了动物体内的血液循环现象,并阐明了心脏在循环过程中的作用,指出血
- 乳头爱抚乳头爱抚,是对乳头附近的刺激使其坚挺兴奋(英语:stimulation of nipples),是一种常见的性表现,施行对象可包含自己或其他人,不限于任何性别或性倾向。据成年男女报告显示对胸部的性
- 赫尔曼·马克赫尔曼·弗朗西斯·马克(英语:Herman Francis Mark,1895年5月3日-1992年4月6日),奥地利裔美国化学家,致力于高分子化学的发展。马克利用X射线衍射研究纤维分子结构,并由此提供了高分
- 因果系统因果系统,称一个系统是“因果”的,是指此系统满足因果性。即对输入的响应不可能在此输入到达的时刻之前出现;也就是说系统的输出仅与当前与过去的输入有关,而与将来的输入无关。
- 骑车骑车,也作骑行,是指出于休闲活动、体能锻炼、体育运动等目的去使用自行车。除了常见的两轮自行车外,人们也会骑独轮车、三轮车、四轮车(英语:quadracycle)等。自行车在19世纪被发
- 族群械斗台湾分类械斗,台语称为拼(piàⁿ),是主要发生在18世纪中到19世纪末的台湾清治时期,自我认知不同族群间的武装冲突。“分类”的意思除了意指这种以武力为主的冲突有着自我与敌人“
- 亚兹德亚兹德省(波斯语:یزد)是伊朗三十一个省份之一。面积129,285平方公里,在伊朗所有省份中位列第七。根据1996年的人口普查结果,亚兹德省人口为750,769 ,其中75.1 %为城镇居民,24.9