代数Riccati方程

✍ dations ◷ 2025-07-05 12:25:19 #矩阵,方程,最佳控制

代数Riccati方程(algebraic Riccati equation)是最优控制的非线性方程,和连续时间(英语:continuous time)或是离散时间下,无限时间(infinite-horizon)的最优控制有关。

标准的代数Riccati方程如下:

连续时间代数Riccati方程(CARE):

离散时间代数Riccati方程(DARE):

是未知数的×对称矩阵,、、及是已知实系数矩阵。

一般而言此方程式有许多的解,不过若有存在稳定解的话,希望可以找到稳定解。

此方程名称中有Riccati,是因为和Riccati方程的关系。连续时间代数Riccati方程(CARE)可以由相关矩阵值的Riccati微分方程的非时变解来验证。离散时间代数Riccati方程(DARE)可以由矩阵值的Riccati微分方程的非时变解来验证(类似离散时间LQR下的Riccati微分方程)。

在无限时间的最佳控制问题中,关注的是一些变数在相当时间之后的值,因此需在现在选定控制变数的值,让系统在之后的时间都在最佳状态下运作。控制变数在任意时间下的最佳值可以用Riccati方程的解以及状态变数当时的观测值求得。若观测变数及控制变数都不只一个,Riccati方程就会是矩阵方程。

代数Riccati方程可以决定无限时间下非时变LQR控制器的解,以及无限时间下非时变LQG控制的解。这两个是控制理论中的基础问题。

典型的离散时间LQR问题,是要最小化以下的函数

其状态方程如下

其中 是 × 1 的状态变数向量, 是 × 1 的控制变数向量, 是 × 的状态递移矩阵, 是 × 的控制系数矩阵, ( × ) 是对应半正定状态损失函数矩阵, ( × ) 是对应正定的控制损失函数矩阵。

从最后时间往前的推导可以找到每一个时间的最佳控制解

其中对应正定cost-to-go矩阵 会依下式,配合 P T = Q {\displaystyle P_{T}=Q} 的稳态解和和趋近无限大时的无限时间问题有关,可以将动态方程反复迭代直到收敛,来求得的稳态解,之后再将动态方程中的时间标注移除,来确认稳态解是否正确。

若代数Riccati方程存在稳定解,求解器一般会设法找到唯一的稳定解。稳定解的意思是指用此解控制相关的LQR系统,可以使闭回路的系统稳定。

针对CARE,其控制律为

闭回路递移矩阵为

其稳定的充份必要条件是所有的特征值都有负的实部。

针对DARE,其控制律为

闭回路递移矩阵为

其稳定的充份必要条件是所有的特征值在复数平面的单位圆内。

代数Riccati方程的解可以用Riccati方程的的迭代或是矩阵因式分解求得。离散时间问题的一种迭代方式是由有限时间问题下的动态Riccati方程,每一次迭代时,矩阵中的值都是从最终时间往前一段有限时间内的最佳解,若进行无限长的迭代。就会分敛到特定矩阵,是无限时间内的最佳解。

针对大型系统,也可以用找特征分解的方式求解。针对CARE,可以定义汉弥尔顿矩阵

因为 Z {\displaystyle \scriptstyle Z} 是汉弥尔顿矩阵,若在虚轴上没有特征值,则会有恰好一半的特征值会有负的实部。若定义 2 n × n {\displaystyle \scriptstyle 2n\times n} 矩阵,其纵排(column)形成对应子空间的基底,表示为区块矩阵的形式,如下所示

是Riccati方程的解。而且 A B R 1 B T P {\displaystyle \scriptstyle A-BR^{-1}B^{T}P} 的特征值即为 Z {\displaystyle \scriptstyle Z} 特征值中有负实部的特征值。

针对DARE,若 A {\displaystyle A} 是可逆矩阵,可以定义辛矩阵

因为 Z {\displaystyle \scriptstyle Z} 是辛矩阵,若在单位圆圆周上没有特征值,则会有恰好一半的特征值会在单位圆内。若定义 2 n × n {\displaystyle \scriptstyle 2n\times n} 矩阵,其纵排(column)形成对应子空间的基底,表示为区块矩阵的形式,如下所示则

是Riccati方程的解。而且 A B ( R + B T P B ) 1 B T P A {\displaystyle \scriptstyle A-B(R+B^{T}PB)^{-1}B^{T}PA} 的特征值即为 Z {\displaystyle \scriptstyle Z} 特征值中,在单位圆内的特征值。

相关

  • 性偏离性偏离(英语:paraphilia),或称性变态(英语:sexual perversion)、性偏见(英语:sexual deviation)、性心理失控(英语:psychosexual disorder)和性反常等,是对非典型对象、恋物、情境、幻想、
  • 心房扑动心房扑动(Atrial Flutter),源自心房异位节律点,每分钟约发出激动波250~350个。其特征为P波外型相似且快速地出现,且呈锯齿状。因为这种激动波是源自于异位节律点,故称之为扑动波
  • 舌岩舌岩,中医外科(疡科)病名,是发生于舌部的癌症,又称舌菌、舌疳,相当于现代医学的舌癌。中医视本病为难治之症,若延及项颌,肿如结核,称为瘰疬风(又称失荣)。
  • 疣猴疣猴属(学名:Colobus),灵长目、猴科的一属,包括五种:
  • 大规模杀伤性武器条约列表为了约束使用、发展、持有各种大规模杀伤性武器,世界各国已制订了各种大规模杀伤性武器条约及协定。条约规范了:
  • 1984年夏季奥林匹克运动会排球比赛1984年夏季奥林匹克运动会的排球项目只有两个小项,共产出两面金牌;排球项目于1984年7月29日至8月10日进行。本届排球比赛设有两个比赛项目,包括:
  • 拜拉希尔拜拉希尔(英语:Byera Hill),是加勒比海岛国圣文森特和格林纳丁斯圣文森特岛东海岸夏洛特区的一座城镇。位于乔治敦的南部,靠近通往首都金斯敦的公路。
  • 乔治·巴兰奇美国芭蕾之父
  • 奕纬隐志郡王奕纬(1808年5月16日-1831年5月23日),爱新觉罗氏,道光帝长子。嘉庆十三年四月二十一日未时出生,生母为和妃纳喇氏。嘉庆十三年四月二十二日,即仁宗皇长孙诞生的第二天,仁宗便
  • 胡宝善胡宝善(1935年6月8日-2019年9月13日),满族,北京人,中华人民共和国美声歌唱家、男中音,一级演员。歌唱代表作有《我爱这蓝色的海洋》等。胡宝善1958年赴保加利亚学习声乐,1961年归国