代数Riccati方程

✍ dations ◷ 2025-11-12 07:47:25 #矩阵,方程,最佳控制

代数Riccati方程(algebraic Riccati equation)是最优控制的非线性方程,和连续时间(英语:continuous time)或是离散时间下,无限时间(infinite-horizon)的最优控制有关。

标准的代数Riccati方程如下:

连续时间代数Riccati方程(CARE):

离散时间代数Riccati方程(DARE):

是未知数的×对称矩阵,、、及是已知实系数矩阵。

一般而言此方程式有许多的解,不过若有存在稳定解的话,希望可以找到稳定解。

此方程名称中有Riccati,是因为和Riccati方程的关系。连续时间代数Riccati方程(CARE)可以由相关矩阵值的Riccati微分方程的非时变解来验证。离散时间代数Riccati方程(DARE)可以由矩阵值的Riccati微分方程的非时变解来验证(类似离散时间LQR下的Riccati微分方程)。

在无限时间的最佳控制问题中,关注的是一些变数在相当时间之后的值,因此需在现在选定控制变数的值,让系统在之后的时间都在最佳状态下运作。控制变数在任意时间下的最佳值可以用Riccati方程的解以及状态变数当时的观测值求得。若观测变数及控制变数都不只一个,Riccati方程就会是矩阵方程。

代数Riccati方程可以决定无限时间下非时变LQR控制器的解,以及无限时间下非时变LQG控制的解。这两个是控制理论中的基础问题。

典型的离散时间LQR问题,是要最小化以下的函数

其状态方程如下

其中 是 × 1 的状态变数向量, 是 × 1 的控制变数向量, 是 × 的状态递移矩阵, 是 × 的控制系数矩阵, ( × ) 是对应半正定状态损失函数矩阵, ( × ) 是对应正定的控制损失函数矩阵。

从最后时间往前的推导可以找到每一个时间的最佳控制解

其中对应正定cost-to-go矩阵 会依下式,配合 P T = Q {\displaystyle P_{T}=Q} 的稳态解和和趋近无限大时的无限时间问题有关,可以将动态方程反复迭代直到收敛,来求得的稳态解,之后再将动态方程中的时间标注移除,来确认稳态解是否正确。

若代数Riccati方程存在稳定解,求解器一般会设法找到唯一的稳定解。稳定解的意思是指用此解控制相关的LQR系统,可以使闭回路的系统稳定。

针对CARE,其控制律为

闭回路递移矩阵为

其稳定的充份必要条件是所有的特征值都有负的实部。

针对DARE,其控制律为

闭回路递移矩阵为

其稳定的充份必要条件是所有的特征值在复数平面的单位圆内。

代数Riccati方程的解可以用Riccati方程的的迭代或是矩阵因式分解求得。离散时间问题的一种迭代方式是由有限时间问题下的动态Riccati方程,每一次迭代时,矩阵中的值都是从最终时间往前一段有限时间内的最佳解,若进行无限长的迭代。就会分敛到特定矩阵,是无限时间内的最佳解。

针对大型系统,也可以用找特征分解的方式求解。针对CARE,可以定义汉弥尔顿矩阵

因为 Z {\displaystyle \scriptstyle Z} 是汉弥尔顿矩阵,若在虚轴上没有特征值,则会有恰好一半的特征值会有负的实部。若定义 2 n × n {\displaystyle \scriptstyle 2n\times n} 矩阵,其纵排(column)形成对应子空间的基底,表示为区块矩阵的形式,如下所示

是Riccati方程的解。而且 A B R 1 B T P {\displaystyle \scriptstyle A-BR^{-1}B^{T}P} 的特征值即为 Z {\displaystyle \scriptstyle Z} 特征值中有负实部的特征值。

针对DARE,若 A {\displaystyle A} 是可逆矩阵,可以定义辛矩阵

因为 Z {\displaystyle \scriptstyle Z} 是辛矩阵,若在单位圆圆周上没有特征值,则会有恰好一半的特征值会在单位圆内。若定义 2 n × n {\displaystyle \scriptstyle 2n\times n} 矩阵,其纵排(column)形成对应子空间的基底,表示为区块矩阵的形式,如下所示则

是Riccati方程的解。而且 A B ( R + B T P B ) 1 B T P A {\displaystyle \scriptstyle A-B(R+B^{T}PB)^{-1}B^{T}PA} 的特征值即为 Z {\displaystyle \scriptstyle Z} 特征值中,在单位圆内的特征值。

相关

  • 生物浓缩性生物浓缩性,因自工业革命之后,人类大量合成各种化学物质应用在生活上,在经过使用之后,其中之化学毒性进入环境当中,在经过食物链生产者→初级消费者→次级消费者逐渐累积体内中的
  • 懒猴懒猴属(学名:Nycticebus)是懒猴科下的一种动物。它们分布在婆罗洲及菲律宾南部,至孟加拉、越南、印尼、印度、中国南部及泰国。它们被列为易危或濒危,因其大眼睛可以作为药材而被
  • 霍巴特霍巴特(英语:Hobart)是澳大利亚塔斯马尼亚州首府,是该州人口最多的城市;为仅次于悉尼的澳大利亚第二古老城市,第十一大城市,城市人口超过廿二万,面积1357.3平方公里。作为塔斯马尼亚
  • landraces作物地方品种(crop landraces) 是个动态名词,指那些起源古老、特征独特尚未进行改良的栽培植物,但它们遗传多样性高、适应当地环境并与传统和栽培体系密切相关。地方品种是地方
  • 宿翱航空宿翱航空(英语:Cebgo)是一间以菲律宾马尼拉帕赛市为总部的廉价航空公司,成立于邦板牙省,前称东南亚航空(SEAir, Inc. / South East Asian Airlines, Inc.)及菲律宾虎航(Tigerair Phi
  • 外援外援(或称援助)指国际政治上,特别是经济上的,对某国或社群提供协助以解决人道危机或达成社经目的。经济上的援助常分赠予及借贷两类。外援除了政府与政府间的援助外,近年来国际组
  • 埃里希·赫克埃里希·赫克(Erich Hecke,1887年9月20日-1947年2月13日),德国数学家。
  • 背叛者《背叛者》是美国女歌手Lady Gaga专辑《天生完美》的第二支单曲,歌曲由Lady Gaga及RedOne写成。《背叛者》是Lady Gaga继《Alejandro》后第二支涉及宗教议题的单曲,因此受到不
  • 庹姓《百家姓》中无此姓.mw-parser-output ruby>rt,.mw-parser-output ruby>rtc{font-feature-settings:"ruby"1}.mw-parser-output ruby.large{font-size:250%}.mw-parser-outp
  • 长勇长勇(日语:長 勇/ちょう いさむ ;1895年1月19日-1945年6月23日),日本陆军军人,最终军衔为陆军中将。出生在日本福冈县糟屋郡的粕屋町,父亲是个农民。1916年5月从陆军士官学校毕业,12