首页 >
正子
✍ dations ◷ 2025-12-10 12:08:54 #正子
6969910938291000000♠9.10938291(40)×10−31 kg
6996548579909460000♠5.4857990946(22)×10−4 u
−1 u正电子(又称阳电子、反电子、正子)是电子的反粒子,即电子的对应反物质。它带有+1单位电荷,+1.6×10-19C,自旋为1/2,质量与电子相同,皆为9.10×10-31kg。正电子与电子碰撞时会产生湮灭现象,这一过程遵守电荷守恒、能量守恒、动量守恒和角动量守恒。在高能情况下,湮灭会生成其他基本粒子。在低能情况下,正负电子湮灭主要生成两个或三个光子(有时也会生成更多光子)。另外,电子和正电子在湮灭之前有时会形成亚稳定的束缚态,即电子偶素。根据电子和正电子的不同自旋状态,电子偶素分为单态(1S0,总自旋为0)和三重态(3S1,总自旋为1)。在真空中,单态电子偶素的半衰期为125ps。三重态电子偶素的半衰期为142ns。当能量超过1.02兆电子伏特的光子经过原子核附近时(成对产生),或者在放射性元素的正β衰变中(通过弱相互作用),都有可能产生正电子。1930年英国物理学家保罗·狄拉克从理论上预言了正电子的存在,1932年美国物理学家卡尔·戴维·安德森在宇宙射线中发现了正电子。保罗·狄拉克于1928年发表了一份论文,当中提出电子能够拥有正电荷及负电荷。在这份论文中,狄拉克首次引进了狄拉克方程,这条方程统一了量子力学、狭义相对论及电子自旋,而自旋当时还是一个很新的概念,用于解释塞曼效应。论文中狄拉克并没有明确地预测新粒子的存在,但他允许电子可以用正能量或负能量作解。正能量解成功解释了实验结果,但负能量解却令狄拉克相当困惑,因为在他的数学模型中负能量解跟正能量解一样有效。在量子力学中是不能够无视负能量解的,这点就跟经典力学很不一样;双重解意味着电子有可能会在正负能量态间自发跳跃。然而,实验并没有观测到这样的跃迁。狄拉克把这个理论与观测间的冲突称为“未解决的难题”。狄拉克于1929年十二月撰写了一份后续论文,尝试解释相对论性电子那无可避免的负能量解。他的论点是“……具有负能量的电子在外加(电磁)场中移动就像它携带了正电荷”。他继续论述说所有空间都可被视为充满负能量态的“海”,因此这样就阻止了电子在正能量态(负电荷)与负能量态(正电荷)间的跃迁。论文同时探讨了质子是这种海中的岛的可能性,及这种岛其实是负电荷电子的可能性。狄拉克承认,质子与电子的巨大质量差是一个难题,但同时表示将来的理论“有希望”解决这个问题。对于狄拉克使用质子作为电子的负能量解,罗伯特·奥本海默表示强烈反对。他断言如果这是真的,那么氢原子就会瞬间自爆。狄拉克被奥本海默的论点说服,于是在1931年发表的一篇论文中预测存在一种未被发现的粒子“反电子”,其质量与电子一样,并且与电子接触时会互相湮灭。理查德·费曼及在他之前的厄恩斯特·斯蒂克尔堡,提出了一种对狄拉克方程负能量解的诠释,就是正电子是逆时间而行的电子。逆时间而行的电子,其电荷为正电荷。约翰·惠勒援引这个概念,来解释所有电子都共有的性质,同时指出在有自相互作用的复世界线上,“它们都是一样的电子”。后来,南部阳一郎将这样的一套理论,应用于所有物质-反物质对的创生与湮灭,还说明了“平常所见成对的最终创生与湮灭,并不是创生与湮灭,而是移动中的粒子改变方向而已,从过去到将来,又或是从将来到过去”。现时物理学家已经接受了逆时间观点,与其他绘景等价,但这个诠释却没有宏观的“因果”,因为微观物理描述并没有因果。德米特里·斯科别利岑(Dmitri Skobeltsyn)最早于1929年观测到正电子。在尝试用威尔逊云室来侦测宇宙射线中伽马辐射的时候,斯科别利岑探测到一种行动像电子的粒子,但它在磁场中的弯曲方向与电子相反。同样地,加州理工学院的一名研究生赵忠尧在1929年也注意到类似的实验结果,显示有一种性质像电子的粒子,但其电荷为正,不过由于实验结果并非决定性,所以赵忠尧并没有继续追查这个现象。卡尔·安德森于1932年8月2日发现正电子,亦因此于1936年获颁诺贝尔物理学奖。“正电子”(positron)一词是由安德森所创的。正电子是第一种被发现的反物质,因此当时成了反物质存在的证据。在发现时,安德森让宇宙射线通过云室及铅片。仪器被磁铁包围,而这些磁铁使不同电荷的粒子向不同的方向弯曲。每一粒通过照相底片的正电子,都会有一条离子轨迹,其曲率对应电子的质荷比,但轨迹方向与电子相反,意味着它的电荷也与电子相反。后来安德森在忆述往事时写道,假若之前赵忠尧的研究有后续的话,那么正电子在那个时候就会被发现了。在安德森公布发现正电子的时候,巴黎的弗雷德里克·约里奥-居里与伊雷娜·约里奥-居里夫妇已经持有有正电子轨迹的老照片,不过他们当时认为那轨是属于质子的,因此不予理会。新的研究大大地增加了正电子的生产量。劳伦斯利福摩尔国家实验室的物理学家团队,用特高亮度的短距离激光轰击一片1毫米厚的金箔,成功生产出1000亿个正电子。某些粒子加速器实验需要使正电子与电子在相对论性速度下对撞。高撞击能量与这些物质─反物质湮灭,能生成一整束各种各样的亚原子粒子。物理学家就是通过研究这些碰撞,来测试理论预测及寻找新的粒子。放射性核素(示踪物)所发射的正电子与生物体内电子湮灭所产生的伽马射线,可用正电子发射计算机断层扫描(PET)来探测。PET扫描器能做出详细的三维图像,显示人体的新陈代谢。材料研究中通常采用正电子湮没谱学(Positron Annihilation Spectroscopy, PAS)技术,用于探测固体材料中的空位、位错等微观缺陷。
相关
- 退伍军人菌属Legionella adelaidensis Legionella anisa Legionella beliardensis Legionella birminghamensis Legionella bozemanii Legionella brunensis Legionella busanensis Legi
- 淋病淋病(Gonorrhea)是一种感染淋球双球菌所导致的性传染病。许多人在感染后,并不会表现任何症状。男性常见症状包括排尿灼热、阴茎开口流脓、睾丸疼痛等。女性的常见症状一样是排
- CYP2D62F9Q, 3QM4, 3TBG, 3TDA, 4WNT, 4WNU, 4WNV, 4WNW· iron ion binding · drug binding · arachidonic acid epoxygenase activity · steroid hydroxylase activity
- 运动损伤运动损伤又称运动创伤或运动伤害(英语:Sports injuries),指在体育运动或体能锻炼过程中发生的创伤。例如在美国,据估计有三千万青少年参与过某种形式的有组织运动,其中每年又有三
- 石墨慢化反应堆石墨慢化反应堆简称石墨反应堆或石墨堆,是一类利用核石墨作为中子慢化剂的核反应堆。石墨慢化反应堆技术已被用于商业发电。石墨慢化反应堆主要分为以下几个类型:1942年,恩里科
- 斯巴达国王列表斯巴达是古希腊最重要的城邦国家之一,在所有希腊城邦国家中领土最广大。斯巴达实行非常独特的政治制度,即由来自两个王室的国王同时统治,两支王室的继承互不干扰。两个王室分别
- 近接放射治疗近距离治疗(取自希腊语“brachys”一词,意思是“短距离”),也称作内照射放疗、密封源式放射治疗、镭疗法或内部镭疗法,是放射治疗的一种形式,即将放射源放置于需要治疗的部位内部
- 锤骨锤骨(malleus, hammer) 是人耳中锤状的小骨, 是三块听小骨(ossicles)中的一个,连接耳膜和砧骨。人的槌骨听小骨18周龄的人类胚胎的头部和颈部,图示其麦克尔软骨和舌骨板(阿尔伯
- 马鞭草马鞭草(学名:Verbena officinalis)为马鞭草科植物。多年生直立草本植物,基部木质化;四方形茎;倒卵形至长椭圆形的叶子对生,边缘有锯齿,叶片通常3深裂,大裂片复分小裂;穗状花序顶生或腋
- 土壤微生物学土壤微生物学是研究土壤中的微生物、生物功能以及它们如何影响土壤性质的一门学科。人们一般认为,在二十到四十亿年前,世界上第一个细菌起源于大海。这些细菌可以固氮,在不断的
