斯莱特行列式

✍ dations ◷ 2025-07-02 09:34:36 #斯莱特行列式
斯莱特行列式是多电子体系波函数的一种表达方式,他以量子物理学家斯莱特的名字命名。这种形式的波函数可以满足对多电子波函数的反对称要求(即所谓泡利原理):交换体系中任意两个电子,则波函数的符号将会反转。在量子化学中,所有基于分子轨道理论的计算方法都用斯莱特行列式的形式来表示多电子体系的波函数。斯莱特行列式最原初的形态是一个由单电子波函数即分子轨道波函数构成的行列式:Ψ ( x 1 , x 2 , ⋯ , x n ) = 1 N ! | χ i ( x 1 ) χ j ( x 1 ) ⋯ χ k ( x 1 ) χ i ( x 2 ) χ j ( x 2 ) ⋯ χ k ( x 2 ) ⋮ ⋮ ⋱ ⋮ χ i ( x n ) χ j ( x n ) ⋯ χ k ( x n ) | {displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}={frac {1}{sqrt {N!}}}{begin{vmatrix}chi _{i(x_{1})}&chi _{j(x_{1})}&cdots &chi _{k(x_{1})}\chi _{i(x_{2})}&chi _{j(x_{2})}&cdots &chi _{k(x_{2})}\vdots &vdots &ddots &vdots \chi _{i(x_{n})}&chi _{j(x_{n})}&cdots &chi _{k(x_{n})}end{vmatrix}}}行列式中每一行是由同一电子的不同可能波函数组成,每一列是由不同电子的相同可能波函数组成,行列式前的系数 ( N ! ) − 1 2 {displaystyle left(N!right)^{-{frac {1}{2}}}} 是保证波函数归一性的归一系数。根据行列式的性质,互换行列式中的两行行列式的符号会反转:| χ i ( x 1 ) χ j ( x 1 ) ⋯ χ k ( x 1 ) χ i ( x 2 ) χ j ( x 2 ) ⋯ χ k ( x 2 ) ⋮ ⋮ ⋱ ⋮ χ i ( x n ) χ j ( x n ) ⋯ χ k ( x n ) | = − | χ i ( x 2 ) χ j ( x 2 ) ⋯ χ k ( x 2 ) χ i ( x 1 ) χ j ( x 1 ) ⋯ χ k ( x 1 ) ⋮ ⋮ ⋱ ⋮ χ i ( x n ) χ j ( x n ) ⋯ χ k ( x n ) | {displaystyle {begin{vmatrix}chi _{i(x_{1})}&chi _{j(x_{1})}&cdots &chi _{k(x_{1})}\chi _{i(x_{2})}&chi _{j(x_{2})}&cdots &chi _{k(x_{2})}\vdots &vdots &ddots &vdots \chi _{i(x_{n})}&chi _{j(x_{n})}&cdots &chi _{k(x_{n})}end{vmatrix}}=-{begin{vmatrix}chi _{i(x_{2})}&chi _{j(x_{2})}&cdots &chi _{k(x_{2})}\chi _{i(x_{1})}&chi _{j(x_{1})}&cdots &chi _{k(x_{1})}\vdots &vdots &ddots &vdots \chi _{i(x_{n})}&chi _{j(x_{n})}&cdots &chi _{k(x_{n})}end{vmatrix}}}这一性质正符合多电子体系的泡利原理Ψ ( x 1 , x 2 , ⋯ , x n ) =∣ χ i , χ j , ⋯ , χ k ⟩ {displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}=mid chi _{i},chi _{j},cdots ,chi _{k}rangle }需要注意的是,这种右矢形式仅仅用来代表行列式,并非数学上的相等关系。Ψ ( x 1 , x 2 , ⋯ , x n ) = 1 N ! ∑ n = 1 N ! ( − 1 ) p n P n [ χ i ( x 1 ) χ j ( x 2 ) ⋯ χ k ( x n ) ] {displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}={frac {1}{sqrt {N!}}}sum _{n=1}^{N!}(-1)^{p_{n}}P_{n}left}其中算子 P n {displaystyle P_{n}} 叫做置换算子,其作用是将各分子轨道波函数中的电子序号进行交换,根据排列的原理,在由N个电子组成的体系中,这样的算子一共有N!个。 p n {displaystyle p_{n}} 是置换算子的奇偶性,即任何置换算子可以转化为若干两两对换的置换算子的乘积,所谓奇偶性就是一个置换算子所分解成的对换算子的个数的奇偶性。与上面提到的右矢形式不同,这种由置换算子来表达的形式与行列式表达式在数学上是严格相等的。Ψ ( x 1 , x 2 , ⋯ , x n ) = A [ χ i ( x 1 ) χ j ( x 2 ) ⋯ χ k ( x n ) ] {displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}=Aleft}其中算子 A = 1 N ! ∑ n = 1 N ! ( − 1 ) p n P n {displaystyle A={frac {1}{sqrt {N!}}}sum _{n=1}^{N!}(-1)^{p_{n}}P_{n}} 叫做反对称化算子。斯莱特行列式在量子化学中应用广泛,经过自洽场方法解HF方程获得的最终解便是一个斯莱特行列式型多电子波函数,高级的量子化学计算方法也应用到斯莱特行列式,组态相互作用方法得到的多电子体系波函数是若干个斯莱特行列式的线性组合:Φ = ∑ i C i Ψ i {displaystyle Phi =sum _{i}C_{i}Psi _{i}}经过对这个由许多行列式组成的巨大波函数的变分法处理,可以获得比HF方程更加精确的量子化学计算结果

相关

  • 妥布霉素Neonates < 1200 g: 11 hrs; > 1200 g 2-9 hrs Adults: 2-3 hours; longer with impaired renal function妥布霉素(Tobramycin)也叫托普霉素,是一种氨基糖苷类抗生素,能用于治
  • 眼球震颤眼球震颤(英文:英语:Nystagmus,/nɪˈstæɡməs/),简称眼震,是一种眼球不自主的节律性(少数非节律性)往返运动,多现于眼、耳和中枢神经系统疾病,但也可能是正常的生理现象,或由实验方法
  • 药物用肾上腺素药物用肾上腺素(英语:Epinephrine, adrenalin 或 adrenaline),既是激素(肾上腺素),也是药物,其用途广泛,囊括过敏性休克、心搏停止和皮肤表面出血。使用Nebulizer 喷雾器(英语:Nebulize
  • 沉积物沉积物为任何可以由流体流动所移动的微粒,并最终成为在水或其他液体底下的一层固体微粒。沉积作用即为混悬剂的沉降过程。沉积物亦可以由风(风成过程)及冰川搬运。沙漠的沙丘及
  • 多维空间维度,又称维数,是数学中独立参数的数目。在物理学和哲学的领域内,指独立的时空坐标的数目。0维是一点,没有长度。1维是线,只有长度。2维是一个平面,是由长度和宽度(或曲线)形成面积
  • 极移极移是地球的自转轴在地球表面横越的运动,这是将地球视为在一个固定不变的参考座标系(所谓的地球中心、地球固定或ECEF参考系)下所做的测量,这种变动只有几米。从一个常用的定义
  • 雅各布弗朗索瓦·雅各布(法语:François Jacob,1920年6月17日-2013年4月19日)是一位犹太裔法国生物学家,他与雅克·莫诺发现了酶在原核生物转录作用调控中的角色,也就是后来所知的乳糖操
  • 但丁协会但丁协会(意大利语:Società Dante Alighieri)成立于1889年7月,是意大利在全世界传播推广意大利语言和文化的非营利组织,以意大利文学巨匠但丁·阿利吉耶里的名字命名。但丁协会
  • 王文采王文采(1926年6月5日-),山东掖县人,中国植物分类学家,中国科学院植物研究所研究员。1949年毕业于北京师范大学生物系。1993年当选为中国科学院院士。
  • 1990年10月3日德国统一日(德语:Der Tag der Deutschen Einheit),即现代德国的国庆节,此为两德统一后的德国联邦政府所规定的全国法定假日,目的是为了纪念1990年10月3日,原德意志联邦共和国(原西德