首页 >
斯莱特行列式
✍ dations ◷ 2025-04-25 09:34:39 #斯莱特行列式
斯莱特行列式是多电子体系波函数的一种表达方式,他以量子物理学家斯莱特的名字命名。这种形式的波函数可以满足对多电子波函数的反对称要求(即所谓泡利原理):交换体系中任意两个电子,则波函数的符号将会反转。在量子化学中,所有基于分子轨道理论的计算方法都用斯莱特行列式的形式来表示多电子体系的波函数。斯莱特行列式最原初的形态是一个由单电子波函数即分子轨道波函数构成的行列式:Ψ
(
x
1
,
x
2
,
⋯
,
x
n
)
=
1
N
!
|
χ
i
(
x
1
)
χ
j
(
x
1
)
⋯
χ
k
(
x
1
)
χ
i
(
x
2
)
χ
j
(
x
2
)
⋯
χ
k
(
x
2
)
⋮
⋮
⋱
⋮
χ
i
(
x
n
)
χ
j
(
x
n
)
⋯
χ
k
(
x
n
)
|
{displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}={frac {1}{sqrt {N!}}}{begin{vmatrix}chi _{i(x_{1})}&chi _{j(x_{1})}&cdots &chi _{k(x_{1})}\chi _{i(x_{2})}&chi _{j(x_{2})}&cdots &chi _{k(x_{2})}\vdots &vdots &ddots &vdots \chi _{i(x_{n})}&chi _{j(x_{n})}&cdots &chi _{k(x_{n})}end{vmatrix}}}行列式中每一行是由同一电子的不同可能波函数组成,每一列是由不同电子的相同可能波函数组成,行列式前的系数
(
N
!
)
−
1
2
{displaystyle left(N!right)^{-{frac {1}{2}}}}
是保证波函数归一性的归一系数。根据行列式的性质,互换行列式中的两行行列式的符号会反转:|
χ
i
(
x
1
)
χ
j
(
x
1
)
⋯
χ
k
(
x
1
)
χ
i
(
x
2
)
χ
j
(
x
2
)
⋯
χ
k
(
x
2
)
⋮
⋮
⋱
⋮
χ
i
(
x
n
)
χ
j
(
x
n
)
⋯
χ
k
(
x
n
)
|
=
−
|
χ
i
(
x
2
)
χ
j
(
x
2
)
⋯
χ
k
(
x
2
)
χ
i
(
x
1
)
χ
j
(
x
1
)
⋯
χ
k
(
x
1
)
⋮
⋮
⋱
⋮
χ
i
(
x
n
)
χ
j
(
x
n
)
⋯
χ
k
(
x
n
)
|
{displaystyle {begin{vmatrix}chi _{i(x_{1})}&chi _{j(x_{1})}&cdots &chi _{k(x_{1})}\chi _{i(x_{2})}&chi _{j(x_{2})}&cdots &chi _{k(x_{2})}\vdots &vdots &ddots &vdots \chi _{i(x_{n})}&chi _{j(x_{n})}&cdots &chi _{k(x_{n})}end{vmatrix}}=-{begin{vmatrix}chi _{i(x_{2})}&chi _{j(x_{2})}&cdots &chi _{k(x_{2})}\chi _{i(x_{1})}&chi _{j(x_{1})}&cdots &chi _{k(x_{1})}\vdots &vdots &ddots &vdots \chi _{i(x_{n})}&chi _{j(x_{n})}&cdots &chi _{k(x_{n})}end{vmatrix}}}这一性质正符合多电子体系的泡利原理Ψ
(
x
1
,
x
2
,
⋯
,
x
n
)
=∣
χ
i
,
χ
j
,
⋯
,
χ
k
⟩
{displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}=mid chi _{i},chi _{j},cdots ,chi _{k}rangle }需要注意的是,这种右矢形式仅仅用来代表行列式,并非数学上的相等关系。Ψ
(
x
1
,
x
2
,
⋯
,
x
n
)
=
1
N
!
∑
n
=
1
N
!
(
−
1
)
p
n
P
n
[
χ
i
(
x
1
)
χ
j
(
x
2
)
⋯
χ
k
(
x
n
)
]
{displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}={frac {1}{sqrt {N!}}}sum _{n=1}^{N!}(-1)^{p_{n}}P_{n}left}其中算子
P
n
{displaystyle P_{n}}
叫做置换算子,其作用是将各分子轨道波函数中的电子序号进行交换,根据排列的原理,在由N个电子组成的体系中,这样的算子一共有N!个。
p
n
{displaystyle p_{n}}
是置换算子的奇偶性,即任何置换算子可以转化为若干两两对换的置换算子的乘积,所谓奇偶性就是一个置换算子所分解成的对换算子的个数的奇偶性。与上面提到的右矢形式不同,这种由置换算子来表达的形式与行列式表达式在数学上是严格相等的。Ψ
(
x
1
,
x
2
,
⋯
,
x
n
)
=
A
[
χ
i
(
x
1
)
χ
j
(
x
2
)
⋯
χ
k
(
x
n
)
]
{displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}=Aleft}其中算子
A
=
1
N
!
∑
n
=
1
N
!
(
−
1
)
p
n
P
n
{displaystyle A={frac {1}{sqrt {N!}}}sum _{n=1}^{N!}(-1)^{p_{n}}P_{n}}
叫做反对称化算子。斯莱特行列式在量子化学中应用广泛,经过自洽场方法解HF方程获得的最终解便是一个斯莱特行列式型多电子波函数,高级的量子化学计算方法也应用到斯莱特行列式,组态相互作用方法得到的多电子体系波函数是若干个斯莱特行列式的线性组合:Φ
=
∑
i
C
i
Ψ
i
{displaystyle Phi =sum _{i}C_{i}Psi _{i}}经过对这个由许多行列式组成的巨大波函数的变分法处理,可以获得比HF方程更加精确的量子化学计算结果
相关
- 生物生物系统层级关系:生物圈 > 生态系统 > 群落 > 种群 > 个体生物 (拉丁语,德语: Organismus, 英语:Organism,又称有机体)是指称类生命的个体。在生物学和生态学中, 地球上约有870万种
- 致癌物质致癌物质(英语:Carcinogen)是指任何会直接导致生物体产生癌症的物质,包括化学物质、病毒、放射性核素等。这些物质进入机体后会直接或间接使机体细胞受到损害,导致生物大分子异常
- 发育异常发育不良(英语:Dysplasia)也称为发育异常,是病理学的词语,是指生物组织发育时的异常,或是上皮部位在分化及发育的问题(上皮发育不良(英语:epithelial dysplasia))。像髋关节发育不全症(
- 次常用国字标准字体表常用国字标准字体表,简称甲表,是中华民国教育部于1979年出版的常用字和字体标准,内收4808字。次常用国字标准字体表,简称乙表,是中华民国教育部于1982年12月出版的次常用字和字体
- 土壤力学土壤力学是应用土壤物理学(英语:Soil physics)和工程力学方法来研究土的力学性质的一门学科。土壤力学的研究对象是与人类活动密切相关的土和土体,包括人工土体和自然土体,以及与
- HBrOsub3/sub溴酸的化学式为HBrO3,是溴的含氧酸之一,其中溴的氧化态为+5。它形成的盐类称为溴酸盐,衍生出的酸根离子称为“溴酸根”离子。固态溴酸及溴酸盐与氯酸/氯酸盐类似,都具有强氧化性
- 亚历山大三世亚历山大三世 Alexander III(1241年9月4日—1286年3月19日)苏格兰国王(1249年—1286年在位)。他是亚历山大二世国王之子,母为科西的玛丽(亚历山大二世的第二个妻子)。亚历山大三世
- span class=nowrapYbsub2/sub(SOsub4/sub)sub&g硫酸镱是一种无机化合物,化学式为Yb2(SO4)3。用硫酸溶解氧化镱,可以得到硫酸镱。
- 鳍状肢鳍是一种平板状的肢、尾或其他构造,用于水中或其他液体中的游动,许多不同的生物皆演化出鳍,尤其是大多数的鱼类。在哺乳类中则有鲸鱼与海狮等动物拥有鳍。其他还有少数的爬虫类
- 胸膛在解剖学上,胸部在许多动物身体的其中一部分。人科动物(包括人类)的胸部位于颈部和腹部之间,由肋骨、脊椎和肩带骨骼所支撑。胸部同时有乳房部分,女性的乳房作哺乳之用,因此胸部也