斯莱特行列式

✍ dations ◷ 2025-04-02 18:28:02 #斯莱特行列式
斯莱特行列式是多电子体系波函数的一种表达方式,他以量子物理学家斯莱特的名字命名。这种形式的波函数可以满足对多电子波函数的反对称要求(即所谓泡利原理):交换体系中任意两个电子,则波函数的符号将会反转。在量子化学中,所有基于分子轨道理论的计算方法都用斯莱特行列式的形式来表示多电子体系的波函数。斯莱特行列式最原初的形态是一个由单电子波函数即分子轨道波函数构成的行列式:Ψ ( x 1 , x 2 , ⋯ , x n ) = 1 N ! | χ i ( x 1 ) χ j ( x 1 ) ⋯ χ k ( x 1 ) χ i ( x 2 ) χ j ( x 2 ) ⋯ χ k ( x 2 ) ⋮ ⋮ ⋱ ⋮ χ i ( x n ) χ j ( x n ) ⋯ χ k ( x n ) | {displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}={frac {1}{sqrt {N!}}}{begin{vmatrix}chi _{i(x_{1})}&chi _{j(x_{1})}&cdots &chi _{k(x_{1})}\chi _{i(x_{2})}&chi _{j(x_{2})}&cdots &chi _{k(x_{2})}\vdots &vdots &ddots &vdots \chi _{i(x_{n})}&chi _{j(x_{n})}&cdots &chi _{k(x_{n})}end{vmatrix}}}行列式中每一行是由同一电子的不同可能波函数组成,每一列是由不同电子的相同可能波函数组成,行列式前的系数 ( N ! ) − 1 2 {displaystyle left(N!right)^{-{frac {1}{2}}}} 是保证波函数归一性的归一系数。根据行列式的性质,互换行列式中的两行行列式的符号会反转:| χ i ( x 1 ) χ j ( x 1 ) ⋯ χ k ( x 1 ) χ i ( x 2 ) χ j ( x 2 ) ⋯ χ k ( x 2 ) ⋮ ⋮ ⋱ ⋮ χ i ( x n ) χ j ( x n ) ⋯ χ k ( x n ) | = − | χ i ( x 2 ) χ j ( x 2 ) ⋯ χ k ( x 2 ) χ i ( x 1 ) χ j ( x 1 ) ⋯ χ k ( x 1 ) ⋮ ⋮ ⋱ ⋮ χ i ( x n ) χ j ( x n ) ⋯ χ k ( x n ) | {displaystyle {begin{vmatrix}chi _{i(x_{1})}&chi _{j(x_{1})}&cdots &chi _{k(x_{1})}\chi _{i(x_{2})}&chi _{j(x_{2})}&cdots &chi _{k(x_{2})}\vdots &vdots &ddots &vdots \chi _{i(x_{n})}&chi _{j(x_{n})}&cdots &chi _{k(x_{n})}end{vmatrix}}=-{begin{vmatrix}chi _{i(x_{2})}&chi _{j(x_{2})}&cdots &chi _{k(x_{2})}\chi _{i(x_{1})}&chi _{j(x_{1})}&cdots &chi _{k(x_{1})}\vdots &vdots &ddots &vdots \chi _{i(x_{n})}&chi _{j(x_{n})}&cdots &chi _{k(x_{n})}end{vmatrix}}}这一性质正符合多电子体系的泡利原理Ψ ( x 1 , x 2 , ⋯ , x n ) =∣ χ i , χ j , ⋯ , χ k ⟩ {displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}=mid chi _{i},chi _{j},cdots ,chi _{k}rangle }需要注意的是,这种右矢形式仅仅用来代表行列式,并非数学上的相等关系。Ψ ( x 1 , x 2 , ⋯ , x n ) = 1 N ! ∑ n = 1 N ! ( − 1 ) p n P n [ χ i ( x 1 ) χ j ( x 2 ) ⋯ χ k ( x n ) ] {displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}={frac {1}{sqrt {N!}}}sum _{n=1}^{N!}(-1)^{p_{n}}P_{n}left}其中算子 P n {displaystyle P_{n}} 叫做置换算子,其作用是将各分子轨道波函数中的电子序号进行交换,根据排列的原理,在由N个电子组成的体系中,这样的算子一共有N!个。 p n {displaystyle p_{n}} 是置换算子的奇偶性,即任何置换算子可以转化为若干两两对换的置换算子的乘积,所谓奇偶性就是一个置换算子所分解成的对换算子的个数的奇偶性。与上面提到的右矢形式不同,这种由置换算子来表达的形式与行列式表达式在数学上是严格相等的。Ψ ( x 1 , x 2 , ⋯ , x n ) = A [ χ i ( x 1 ) χ j ( x 2 ) ⋯ χ k ( x n ) ] {displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}=Aleft}其中算子 A = 1 N ! ∑ n = 1 N ! ( − 1 ) p n P n {displaystyle A={frac {1}{sqrt {N!}}}sum _{n=1}^{N!}(-1)^{p_{n}}P_{n}} 叫做反对称化算子。斯莱特行列式在量子化学中应用广泛,经过自洽场方法解HF方程获得的最终解便是一个斯莱特行列式型多电子波函数,高级的量子化学计算方法也应用到斯莱特行列式,组态相互作用方法得到的多电子体系波函数是若干个斯莱特行列式的线性组合:Φ = ∑ i C i Ψ i {displaystyle Phi =sum _{i}C_{i}Psi _{i}}经过对这个由许多行列式组成的巨大波函数的变分法处理,可以获得比HF方程更加精确的量子化学计算结果

相关

  • 化学物理学化学物理学是化学和物理学的交叉学科,借助原子与分子物理学和凝聚态物理学中的理论方法和实验技术,研究物理化学现象的学科,是从物理学观点研究化学过程的物理学分支学科。化学
  • 并系并系群(英语:Paraphyletic group或 Paraphyly )是支序分类中的一种分类单元,此分类群中的成员皆拥有“最近共同祖先”,但该群中并不包含此最近共同祖先之所有后代。一个类群是否
  • 最近的共同祖先最近共同祖先(英语:Most recent common ancestor,缩写 MRCA)是演化生物学中表示一系列不同的物种拥有共同起源的那个最近的祖先。这一概念经常应用于人类的宗谱。人类的最近共同
  • 意大利电影意大利电影(意大利语:Cinema italiano)是指在意大利制作或由意大利人制作的电影。意大利在法国卢米埃兄弟开始拍摄电影几个月之后就开始发展电影,孕育出许多著名电影导演。而意
  • 猩猩猩猩是一群与人类在演化关系上最为密切的动物的统称。这个词汇包括除人属外的全部现存人科(又叫猩猩科)动物,如下:
  • 俄勒冈州立大学俄勒冈州立大学(Oregon State University,OSU)是美国俄勒冈州科瓦利斯的一所公立研究型大学,创立于1868年,创始之初与共济会有很大的联系。该大学共13个学院,林业和农业学科尤为出
  • 基因编辑基因编辑(英语:Genome Editing),又称基因组工程,是遗传工程的一种, 是指在活体基因组中进行DNA插入、删除、修改或替换的一项技术。 其与早期的遗传工程技术的不同之处在于,早期的
  • 弗朗索瓦·布歇弗朗索瓦·布歇 (又译法兰撒·布歇或法兰克斯·布歇,法语:François Boucher,发音:/.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe U
  • 沙拉油色拉油为适合使用于色拉的油脂,主要需求为在相对低温的状况下仍能保持液态,以便用于色拉上。包含多种植物油经过精制去除非脂肪酸物质,并经过低温分提,以获得不饱和脂肪酸较高的
  • 飞行安全航空安全是指牵涉航空的安全,概念包括调查与研究空难的原因,以及避免空难发生的措施,包括定下相关规例、培训相关员工及向公众进行相关教育。而国际性的航空安全监管组织包括美