斯莱特行列式

✍ dations ◷ 2025-07-07 11:49:00 #斯莱特行列式
斯莱特行列式是多电子体系波函数的一种表达方式,他以量子物理学家斯莱特的名字命名。这种形式的波函数可以满足对多电子波函数的反对称要求(即所谓泡利原理):交换体系中任意两个电子,则波函数的符号将会反转。在量子化学中,所有基于分子轨道理论的计算方法都用斯莱特行列式的形式来表示多电子体系的波函数。斯莱特行列式最原初的形态是一个由单电子波函数即分子轨道波函数构成的行列式:Ψ ( x 1 , x 2 , ⋯ , x n ) = 1 N ! | χ i ( x 1 ) χ j ( x 1 ) ⋯ χ k ( x 1 ) χ i ( x 2 ) χ j ( x 2 ) ⋯ χ k ( x 2 ) ⋮ ⋮ ⋱ ⋮ χ i ( x n ) χ j ( x n ) ⋯ χ k ( x n ) | {displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}={frac {1}{sqrt {N!}}}{begin{vmatrix}chi _{i(x_{1})}&chi _{j(x_{1})}&cdots &chi _{k(x_{1})}\chi _{i(x_{2})}&chi _{j(x_{2})}&cdots &chi _{k(x_{2})}\vdots &vdots &ddots &vdots \chi _{i(x_{n})}&chi _{j(x_{n})}&cdots &chi _{k(x_{n})}end{vmatrix}}}行列式中每一行是由同一电子的不同可能波函数组成,每一列是由不同电子的相同可能波函数组成,行列式前的系数 ( N ! ) − 1 2 {displaystyle left(N!right)^{-{frac {1}{2}}}} 是保证波函数归一性的归一系数。根据行列式的性质,互换行列式中的两行行列式的符号会反转:| χ i ( x 1 ) χ j ( x 1 ) ⋯ χ k ( x 1 ) χ i ( x 2 ) χ j ( x 2 ) ⋯ χ k ( x 2 ) ⋮ ⋮ ⋱ ⋮ χ i ( x n ) χ j ( x n ) ⋯ χ k ( x n ) | = − | χ i ( x 2 ) χ j ( x 2 ) ⋯ χ k ( x 2 ) χ i ( x 1 ) χ j ( x 1 ) ⋯ χ k ( x 1 ) ⋮ ⋮ ⋱ ⋮ χ i ( x n ) χ j ( x n ) ⋯ χ k ( x n ) | {displaystyle {begin{vmatrix}chi _{i(x_{1})}&chi _{j(x_{1})}&cdots &chi _{k(x_{1})}\chi _{i(x_{2})}&chi _{j(x_{2})}&cdots &chi _{k(x_{2})}\vdots &vdots &ddots &vdots \chi _{i(x_{n})}&chi _{j(x_{n})}&cdots &chi _{k(x_{n})}end{vmatrix}}=-{begin{vmatrix}chi _{i(x_{2})}&chi _{j(x_{2})}&cdots &chi _{k(x_{2})}\chi _{i(x_{1})}&chi _{j(x_{1})}&cdots &chi _{k(x_{1})}\vdots &vdots &ddots &vdots \chi _{i(x_{n})}&chi _{j(x_{n})}&cdots &chi _{k(x_{n})}end{vmatrix}}}这一性质正符合多电子体系的泡利原理Ψ ( x 1 , x 2 , ⋯ , x n ) =∣ χ i , χ j , ⋯ , χ k ⟩ {displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}=mid chi _{i},chi _{j},cdots ,chi _{k}rangle }需要注意的是,这种右矢形式仅仅用来代表行列式,并非数学上的相等关系。Ψ ( x 1 , x 2 , ⋯ , x n ) = 1 N ! ∑ n = 1 N ! ( − 1 ) p n P n [ χ i ( x 1 ) χ j ( x 2 ) ⋯ χ k ( x n ) ] {displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}={frac {1}{sqrt {N!}}}sum _{n=1}^{N!}(-1)^{p_{n}}P_{n}left}其中算子 P n {displaystyle P_{n}} 叫做置换算子,其作用是将各分子轨道波函数中的电子序号进行交换,根据排列的原理,在由N个电子组成的体系中,这样的算子一共有N!个。 p n {displaystyle p_{n}} 是置换算子的奇偶性,即任何置换算子可以转化为若干两两对换的置换算子的乘积,所谓奇偶性就是一个置换算子所分解成的对换算子的个数的奇偶性。与上面提到的右矢形式不同,这种由置换算子来表达的形式与行列式表达式在数学上是严格相等的。Ψ ( x 1 , x 2 , ⋯ , x n ) = A [ χ i ( x 1 ) χ j ( x 2 ) ⋯ χ k ( x n ) ] {displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}=Aleft}其中算子 A = 1 N ! ∑ n = 1 N ! ( − 1 ) p n P n {displaystyle A={frac {1}{sqrt {N!}}}sum _{n=1}^{N!}(-1)^{p_{n}}P_{n}} 叫做反对称化算子。斯莱特行列式在量子化学中应用广泛,经过自洽场方法解HF方程获得的最终解便是一个斯莱特行列式型多电子波函数,高级的量子化学计算方法也应用到斯莱特行列式,组态相互作用方法得到的多电子体系波函数是若干个斯莱特行列式的线性组合:Φ = ∑ i C i Ψ i {displaystyle Phi =sum _{i}C_{i}Psi _{i}}经过对这个由许多行列式组成的巨大波函数的变分法处理,可以获得比HF方程更加精确的量子化学计算结果

相关

  • 潮汐能潮汐能是指从海水面昼夜间的涨落中获得的能量。在涨潮或落潮过程中,由海水进出水库带动发电机发电。潮汐能是一种水能,它将潮汐的能量转换成电能及其它种有用形式的能源。第一
  • 生物素生物素(Biotin)为维生素B群之一,又称维生素H、维生素B7、辅酶R(Coenzyme R)等。 生物素在肝、肾、酵母、牛乳中含量较多,是生物体固定二氧化碳的重要因素。容易同鸡蛋白中的一种蛋
  • 同核分子单质是由同种元素组成的纯净物。元素在单质中存在时称为元素的游离态。一般来说,单质的性质与其元素的性质密切相关。比如,很多金属的金属性都很明显,那么它们的单质还原性就很
  • 苏联国家安全委员会国家安全委员会(俄语:Комите́т госуда́рственной безопа́сности, 听 帮助·信息,俄文罗马化:Komitet gosudarstvennoy bezopasnosti),通称
  • 海带目见内文海带目是褐藻纲之下一个目级的海藻分类单元,现时包括有约30个属。 这些海带生长于浅海海洋底下的海藻林:一种类似于陆地上森林的海洋植物群落,估计从中新世(即500到2300万
  • 生抽生抽又称淡酱油,是酱油的一种。特色是色泽较淡,呈红褐色,以及味道较咸。生抽颜色淡,咸味重,在烹调中主要用来调味。而老抽颜色重,咸味淡,主要用来调色。生抽以大豆和面粉作为主要原
  • 氯化钡氯化钡(化学式:BaCl2)是钡的氯化物,有毒,灼烧时产生黄绿色的光。氯化钡可以由碳酸钡(自然界中的毒重石)或氢氧化钡和盐酸的反应得到。工业上可以从硫酸钡经过两个步骤得到:氯化钡溶
  • WikiaWikia(中文:维基亚),原名WikiCities(中文:维基城),是一个Wiki农场,创立于2004年10月18日,创立人为吉米·威尔士和安琪拉·贝丝蕾,主要提供wiki服务。Wikia股份有限公司集结了许多不同族
  • 白鹡鸰白鹡鸰(学名:Motacilla alba)是一种小型鹡鸰,属于鹡鸰科。喜滨水活动,多在河溪边、湖沼、水渠等处,在离水较近的耕地附近、草地、荒坡、路边等处也可见到。主要分布在欧亚大陆的大
  • 食品加工业食品加工业是将食物透过物理或化学途径转化为其他形态的食物产业,旨于令食材更易包装及烹饪。典形的食物加工包括切碎、浸渍、液化、乳化、烹调(例如煮、烤、煎、烧)、腌制,甚至