首页 >
斯莱特行列式
✍ dations ◷ 2025-05-16 07:25:31 #斯莱特行列式
斯莱特行列式是多电子体系波函数的一种表达方式,他以量子物理学家斯莱特的名字命名。这种形式的波函数可以满足对多电子波函数的反对称要求(即所谓泡利原理):交换体系中任意两个电子,则波函数的符号将会反转。在量子化学中,所有基于分子轨道理论的计算方法都用斯莱特行列式的形式来表示多电子体系的波函数。斯莱特行列式最原初的形态是一个由单电子波函数即分子轨道波函数构成的行列式:Ψ
(
x
1
,
x
2
,
⋯
,
x
n
)
=
1
N
!
|
χ
i
(
x
1
)
χ
j
(
x
1
)
⋯
χ
k
(
x
1
)
χ
i
(
x
2
)
χ
j
(
x
2
)
⋯
χ
k
(
x
2
)
⋮
⋮
⋱
⋮
χ
i
(
x
n
)
χ
j
(
x
n
)
⋯
χ
k
(
x
n
)
|
{displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}={frac {1}{sqrt {N!}}}{begin{vmatrix}chi _{i(x_{1})}&chi _{j(x_{1})}&cdots &chi _{k(x_{1})}\chi _{i(x_{2})}&chi _{j(x_{2})}&cdots &chi _{k(x_{2})}\vdots &vdots &ddots &vdots \chi _{i(x_{n})}&chi _{j(x_{n})}&cdots &chi _{k(x_{n})}end{vmatrix}}}行列式中每一行是由同一电子的不同可能波函数组成,每一列是由不同电子的相同可能波函数组成,行列式前的系数
(
N
!
)
−
1
2
{displaystyle left(N!right)^{-{frac {1}{2}}}}
是保证波函数归一性的归一系数。根据行列式的性质,互换行列式中的两行行列式的符号会反转:|
χ
i
(
x
1
)
χ
j
(
x
1
)
⋯
χ
k
(
x
1
)
χ
i
(
x
2
)
χ
j
(
x
2
)
⋯
χ
k
(
x
2
)
⋮
⋮
⋱
⋮
χ
i
(
x
n
)
χ
j
(
x
n
)
⋯
χ
k
(
x
n
)
|
=
−
|
χ
i
(
x
2
)
χ
j
(
x
2
)
⋯
χ
k
(
x
2
)
χ
i
(
x
1
)
χ
j
(
x
1
)
⋯
χ
k
(
x
1
)
⋮
⋮
⋱
⋮
χ
i
(
x
n
)
χ
j
(
x
n
)
⋯
χ
k
(
x
n
)
|
{displaystyle {begin{vmatrix}chi _{i(x_{1})}&chi _{j(x_{1})}&cdots &chi _{k(x_{1})}\chi _{i(x_{2})}&chi _{j(x_{2})}&cdots &chi _{k(x_{2})}\vdots &vdots &ddots &vdots \chi _{i(x_{n})}&chi _{j(x_{n})}&cdots &chi _{k(x_{n})}end{vmatrix}}=-{begin{vmatrix}chi _{i(x_{2})}&chi _{j(x_{2})}&cdots &chi _{k(x_{2})}\chi _{i(x_{1})}&chi _{j(x_{1})}&cdots &chi _{k(x_{1})}\vdots &vdots &ddots &vdots \chi _{i(x_{n})}&chi _{j(x_{n})}&cdots &chi _{k(x_{n})}end{vmatrix}}}这一性质正符合多电子体系的泡利原理Ψ
(
x
1
,
x
2
,
⋯
,
x
n
)
=∣
χ
i
,
χ
j
,
⋯
,
χ
k
⟩
{displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}=mid chi _{i},chi _{j},cdots ,chi _{k}rangle }需要注意的是,这种右矢形式仅仅用来代表行列式,并非数学上的相等关系。Ψ
(
x
1
,
x
2
,
⋯
,
x
n
)
=
1
N
!
∑
n
=
1
N
!
(
−
1
)
p
n
P
n
[
χ
i
(
x
1
)
χ
j
(
x
2
)
⋯
χ
k
(
x
n
)
]
{displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}={frac {1}{sqrt {N!}}}sum _{n=1}^{N!}(-1)^{p_{n}}P_{n}left}其中算子
P
n
{displaystyle P_{n}}
叫做置换算子,其作用是将各分子轨道波函数中的电子序号进行交换,根据排列的原理,在由N个电子组成的体系中,这样的算子一共有N!个。
p
n
{displaystyle p_{n}}
是置换算子的奇偶性,即任何置换算子可以转化为若干两两对换的置换算子的乘积,所谓奇偶性就是一个置换算子所分解成的对换算子的个数的奇偶性。与上面提到的右矢形式不同,这种由置换算子来表达的形式与行列式表达式在数学上是严格相等的。Ψ
(
x
1
,
x
2
,
⋯
,
x
n
)
=
A
[
χ
i
(
x
1
)
χ
j
(
x
2
)
⋯
χ
k
(
x
n
)
]
{displaystyle Psi _{(x_{1},x_{2},cdots ,x_{n})}=Aleft}其中算子
A
=
1
N
!
∑
n
=
1
N
!
(
−
1
)
p
n
P
n
{displaystyle A={frac {1}{sqrt {N!}}}sum _{n=1}^{N!}(-1)^{p_{n}}P_{n}}
叫做反对称化算子。斯莱特行列式在量子化学中应用广泛,经过自洽场方法解HF方程获得的最终解便是一个斯莱特行列式型多电子波函数,高级的量子化学计算方法也应用到斯莱特行列式,组态相互作用方法得到的多电子体系波函数是若干个斯莱特行列式的线性组合:Φ
=
∑
i
C
i
Ψ
i
{displaystyle Phi =sum _{i}C_{i}Psi _{i}}经过对这个由许多行列式组成的巨大波函数的变分法处理,可以获得比HF方程更加精确的量子化学计算结果
相关
- 死亡焦虑死亡焦虑是由死亡想法引起的焦虑。 其一将死亡焦虑定义为当一个人想到死亡的过程,或者停止'存在'时,死亡焦虑被定义为"恐惧、忧虑或焦虑的感觉"。其二为死亡恐惧症(死亡恐怖症
- 草食动物在动物学上,草食性是指主要食物为植物的动物。而一些选择不吃肉类的人则被称为素食者。实际上“草食性”并非指“吃草”的动物,还包括吃木质、花粉、花蜜、水果、谷物等。在英
- 瑜珈瑜伽(印地语:योग,英语:yoga),源于古印度文化,义为探寻“梵我一如”的道理与方法,古印度六大哲学派别中有瑜伽派(英语:Yoga (philosophy))。而现代人所称的瑜伽则是主要是一系列的修
- 安山岩安山岩(英语:Andesite)是一种中性火山喷出岩,是造山带最普通的火山岩,其中含有斑晶,斑晶是中性斜长石,深色矿物有辉石、角闪石,基质为隐晶质,由斜长石和极少量正长石或石英组成。主
- 伊朗航天局伊朗航天局(波斯语:سازمان فضایی ایران,英语:the Iranian Space Agency,缩写:IRISA 或 ISA)是伊朗的公共民用航天机构,于2004年2月1日在首都德黑兰组建,航天局局长
- ScopusScopus是一家文献数据库。它囊括有全球5000多家在科学、技术、医学和社会科学等领域的出版商。
- MUC16· Golgi lumen · plasma membrane · integral to membrane· O-glycan processing · post-translational protein modificationCA-125(癌抗原-125或糖链抗原-125,英文:c
- 王大成王大成(1949年1月-),四川成都人,中国分子生物物理学家,中国科学院生物物理研究所研究员。生于四川成都。1963年毕业于中国科学技术大学生物物理系。 2005年当选为中国科学院院士。
- 渡轮渡轮,亦称为摆渡船、交通船,在固定航线上用来运输乘客的商船(英语:Merchant vessel),一般提供双向运送服务。渡轮有时也运送载具与货物,有时因其功能不同而被称作“水上巴士”或“
- 仁武仁武区(台湾话:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvetica,Arial,sans-serif} Jîn-