边 (图论)

✍ dations ◷ 2025-06-07 10:48:51 #图论

在图论中,边(edges)是图的基本单元之一,其与点共同组成了图。一般的情况下,边通常是连接两个点的图论元素,而在部分的情况下会只连接1个点(如非简单图)或连接3个或更多个点(如超图),因此边通常可以被定义为将点相连的元素,而被边连接的点称为端点。

边依照连接的点数量可以分为三类,其中一种称为简单边,即这些边连接2个相异的点。简单图的每一个边皆为简单边。另一种为超边(hyperedges),即这些边连接3个或更多个点,通常出现于超图中,其也可以依照其连接的边数称为多元边,例如连接三个点的边可称为三元边。另一类为只连接1个点的边,或连接的两点是相同点的边,这种边通常称为自环。

而根据图的有向性,边又可以分成两种,有向边和无向边。

在图论中,简单边是指连接2个相异点的边。简单图的每一个边皆为简单边。更正式地,简单边可以定义为,有一个图 G {\displaystyle G} 是一个二元组 G = ( V , E ) {\displaystyle G=(V,E)} ,其中 V {\displaystyle V} 是点集、 E {\displaystyle E} 是边集,并且满足 E { { x , y } : ( x , y ) V 2 , x y } {\displaystyle E\subseteq \left\{\left\{x,y\right\}:(x,y)\in V^{2},x\neq y\right\}} ,由所有无序点对构成(换句话说,边连接了两相异点),而这个连接了此两个相异点的边则称为简单边。

在图论中,超边又称超链接(hyperlinks)、接口或连接(connectors)是指连接任意数量点的边,其连接的点数量不一定为2个,可能是3个或更多。更正式地,超边可以定义为,有一个超图 H {\displaystyle H} 是一个二元组 H = ( X , E ) {\displaystyle H=(X,E)} where X {\displaystyle X} ,其中 X {\displaystyle X} 是点集、 E {\displaystyle E} 是边集,且边集是 P ( X ) { } {\displaystyle {\mathcal {P}}(X)\setminus \{\emptyset \}} 的子集、 P ( X ) {\displaystyle {\mathcal {P}}(X)} X {\displaystyle X} 的幂集,而 P ( X ) { } {\displaystyle {\mathcal {P}}(X)\setminus \{\emptyset \}} 中的边称为超边。

在不同领域中,超边有许多不同的名称,例如,在计算几何学中,超边又可以被称为范围(ranges)、在合作博弈论中,超边又可称为简单博弈(simple games)。

在图论中,自环(Loop)是一条顶点与自身连接的边。而花束图(英语:Bouquet_graph)中所有的边皆为自环。

若一个边不具有方向性,则称该边为无向边,其可以视为2个点的集合,或只有2个点的超边。无向边也可以在有向图中存在,即双向连结都存在的边,例如有两点A和B,若同时存在A到B的边和B到A的边,则这条边在这个有向图中可以称为一个无向边。

在图论中,有向边又称弧或箭。若一个边具有方向性,则称该边为有向边。有向边通常会包含一个起点与终点。

有向边也可以推广到超图中,其中一种对于有向超边的定义为,有向超边可以被定义为一个有序对(T,H),其中T代表终点集、H代表起点集,H与T是两不相交的集合。

在图论中的边与几何学的边不同,图论中的边是指连接点的抽象对象,不同于多边形、多面体等几何图形的边,几何图形的边通常具有具体的线段或曲线,而图论中的边仅表达了哪些顶点要相连,哪些不用。

相关

  • 多株抗体多克隆抗体,亦作“多株抗体”(Polyclonal Antibody)是一种含有多种类型抗体的抗体混合物。其名称中的“多”指抗体混合物由不同类型的浆细胞生产而来:430。要生产多克隆抗体,首
  • 乳酸乳酸(IUPAC学名:2-羟基丙酸)是一种化合物,它在多种生物化学过程中起作用。它是一种羧酸,分子式是C3H6O3。它是一个含有羟基的羧酸,因此是一个α-羟酸(AHA)。在水溶液中它的羧基释放
  • 热带雨林热带雨林气候,又称热带型雨林气候,全年高温多雨,可分为两种子类型:常年受赤道低压带控制的赤道多雨气候和常年受潮湿信风控制的热带海洋性气候,在对应的柯本气候分类法中代号为“
  • 陀瑟他《陀瑟他》(亚拉姆语:תוספתא,英语:Tosefta),犹太教的经典之一,源自于《米书拿》(Mishnah)的时代,是犹太口传律法的集合。《米书拿》(Mishnah)是犹太教口传律法的最基本部分,大约在
  • 物性论《物性论》(De rerum natura) 是罗马共和国末期的诗人和哲学家卢克莱修创作于公元前1世纪的哲理长诗。《物性论》一诗分为6卷,用抑扬六步格写成,其内容主要是阐明伊壁鸠鲁的哲
  • 捷克语捷克语(čeština)属于斯拉夫语族西斯拉夫语支的成员,属同一语支的语言还有斯洛伐克语、波兰语、波美拉尼亚语、索布语、西里西亚语等语言。捷克语的语言人口有1200万人,他们大
  • 糖苷键糖苷键(英语:Glycosidic bond,旧称配糖键)是指特定类型的化学键,连接糖苷分子中的非糖部分(即苷元)与糖基,或者糖基与糖基。含有配糖键的物质称为糖苷(或配糖体)。根据与糖基异头碳原
  • 联合国联合国创设于1945年,但直到2008年12月,才首度正式触及性倾向或性别认同的议题。当时,以欧盟为首的一方,向联合国大会提交一份由荷兰、法国发起的声明(A/63/635),计划在表决通过后成
  • 浅草浅草(日语:浅草/あさくさ Asakusa */?),本身既是日本东京都台东区的一个地名,也是以浅草寺为中心的周边繁华街区的总称。在近年东京都内实行区份合并以前,浅草本来是东京都内的一
  • 新加坡菜由于新加坡的地理位置,新加坡饮食反映出马来西亚文化,与马来西亚文化的多样性,来自中国、印尼、印度、土生华人、越南、柬埔寨、菲律宾、缅甸,以及来自十九世纪英国所带来的西方