边 (图论)

✍ dations ◷ 2025-10-25 00:13:03 #图论

在图论中,边(edges)是图的基本单元之一,其与点共同组成了图。一般的情况下,边通常是连接两个点的图论元素,而在部分的情况下会只连接1个点(如非简单图)或连接3个或更多个点(如超图),因此边通常可以被定义为将点相连的元素,而被边连接的点称为端点。

边依照连接的点数量可以分为三类,其中一种称为简单边,即这些边连接2个相异的点。简单图的每一个边皆为简单边。另一种为超边(hyperedges),即这些边连接3个或更多个点,通常出现于超图中,其也可以依照其连接的边数称为多元边,例如连接三个点的边可称为三元边。另一类为只连接1个点的边,或连接的两点是相同点的边,这种边通常称为自环。

而根据图的有向性,边又可以分成两种,有向边和无向边。

在图论中,简单边是指连接2个相异点的边。简单图的每一个边皆为简单边。更正式地,简单边可以定义为,有一个图 G {\displaystyle G} 是一个二元组 G = ( V , E ) {\displaystyle G=(V,E)} ,其中 V {\displaystyle V} 是点集、 E {\displaystyle E} 是边集,并且满足 E { { x , y } : ( x , y ) V 2 , x y } {\displaystyle E\subseteq \left\{\left\{x,y\right\}:(x,y)\in V^{2},x\neq y\right\}} ,由所有无序点对构成(换句话说,边连接了两相异点),而这个连接了此两个相异点的边则称为简单边。

在图论中,超边又称超链接(hyperlinks)、接口或连接(connectors)是指连接任意数量点的边,其连接的点数量不一定为2个,可能是3个或更多。更正式地,超边可以定义为,有一个超图 H {\displaystyle H} 是一个二元组 H = ( X , E ) {\displaystyle H=(X,E)} where X {\displaystyle X} ,其中 X {\displaystyle X} 是点集、 E {\displaystyle E} 是边集,且边集是 P ( X ) { } {\displaystyle {\mathcal {P}}(X)\setminus \{\emptyset \}} 的子集、 P ( X ) {\displaystyle {\mathcal {P}}(X)} X {\displaystyle X} 的幂集,而 P ( X ) { } {\displaystyle {\mathcal {P}}(X)\setminus \{\emptyset \}} 中的边称为超边。

在不同领域中,超边有许多不同的名称,例如,在计算几何学中,超边又可以被称为范围(ranges)、在合作博弈论中,超边又可称为简单博弈(simple games)。

在图论中,自环(Loop)是一条顶点与自身连接的边。而花束图(英语:Bouquet_graph)中所有的边皆为自环。

若一个边不具有方向性,则称该边为无向边,其可以视为2个点的集合,或只有2个点的超边。无向边也可以在有向图中存在,即双向连结都存在的边,例如有两点A和B,若同时存在A到B的边和B到A的边,则这条边在这个有向图中可以称为一个无向边。

在图论中,有向边又称弧或箭。若一个边具有方向性,则称该边为有向边。有向边通常会包含一个起点与终点。

有向边也可以推广到超图中,其中一种对于有向超边的定义为,有向超边可以被定义为一个有序对(T,H),其中T代表终点集、H代表起点集,H与T是两不相交的集合。

在图论中的边与几何学的边不同,图论中的边是指连接点的抽象对象,不同于多边形、多面体等几何图形的边,几何图形的边通常具有具体的线段或曲线,而图论中的边仅表达了哪些顶点要相连,哪些不用。

相关

  • 慢性阻塞性肺病慢性阻塞性肺疾病(英语:Chronic obstructive pulmonary disease,缩写为COPD),常简称为慢阻肺。是一种以持续性的气流受限为特征的阻塞性肺疾病(英语:Obstructive lung disease)。其
  • 维和行动这是一个有关于联合国自1945年成立以来的历次维持和平行动(简称维和行动)的详细情况列表。该列表详细叙述了历次维持和平行动的时间、行动名称、维持和平行动所在的国家或地区
  • 卤代烷烃卤代烷烃或称卤代烷,是指烷烃分子中的一个或多个氢原子被卤素原子(氟、氯、溴、碘)取代的有机化合物,属于卤代烃。天然存在的卤代烃种类不多,大多数卤代烃属于合成产物。卤代烃一
  • 缅甸缅甸的犹太人,最早是在19世纪时从英属印度来的商人,人口大约2500人。缅甸历史上最早关于犹太人的记载是在18世纪,当时一个犹太人所罗门·戈比诺成为国王雍笈牙的军队指挥官。在
  • 1940年1940年美国人口普查(英语:1940 United States Census)是美国历史上第16次全国人口普查,确定了美国的常住人口为131,669,275人,相比1930年美国人口普查,同比增长为7.3%。1940年的人
  • .mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
  • 口罩实名制口罩实名制是指由政府管制口罩,并以实名制方式配给口罩的政策。此政策史上首次出现于2019冠状病毒病疫情影响期间,部分国家及地区的医疗机构与民众大量采买口罩用于防治飞沫传
  • 国际工业设计协会国际工业设计协会(The International Council of Societies of Industrial Design,ICSID),成立于1957年,是一个由多个国际工业设计组织发起成立的非营利组织,旨在提升全球工业设计
  • 堺雅人堺雅人(日语:堺 雅人/さかい まさと Sakai Masato,1973年10月14日-),日本知名男演员,隶属于田边事务所(日语:田辺エージェンシー),妻子为演员菅野美穗。早稻田大学第一文学部中国文学专
  • 兵库县兵库县(日语:兵庫県/ひょうごけん〔ひやうごけん〕 Hyōgo ken */?)是日本近畿地方的一个县,面积8396.39km²,县治为神户市。总人口约550万,县内城市大部分集中在濑户内海沿岸。