丢番图几何

✍ dations ◷ 2025-09-06 16:05:31 #丢番图几何
算术几何(arithmetic geometry)亦称算术代数几何,代数几何的一个分支。原指从法尔廷斯(Faltings,G.)、奎伦(Quillen,D.G.)等的算术曲面上黎曼-罗赫定理开始的一系列研究工作,现在一般指所有以数论为背景或目的的代数几何。在算术几何中许多学科起着重要作用,并且相互交叉和渗透,包括数论、模形式、表示论、代数几何、代数数论、李群、多复变函数论、黎曼面、K理论等,所以,它是典型的边缘学科。丢番图方程是算术几何的一个重要课题,其中的问题可以自然地用几何语言表达。在许多著名问题如莫德尔猜想、费马大定理等的研究中,都表明几何方法的必要性。这正是算术几何的生命力所在。

相关

  • PNS周边神经病变(英语:Peripheral neuropathy,缩写PN)俗称神经系统疾病,是指神经系统的疾病或异常状态下的神经系统 。虽然在大众文化中神经病常常是一种代替精神病的说法,但神经病实
  • 囊担菌纲囊担菌目(Cystobasidiales) 担孢酵母目(Erythrobasidiales) Naohideales囊担菌纲(学名:Cystobasidiomycetes)是担子菌门柄锈菌亚门下的一个纲。该纲包括Cystobasidiales、Erythroba
  • 水源性荨麻疹水源性荨麻疹(Aquagenic urticaria)也称为水过敏(water allergy)或是水荨麻疹(water urticaria),是罕见的物理荨麻疹(英语:physical urticaria)症状。有时会将水源性荨麻疹视为过敏,不
  • 类固醇生成甾体(英语:steroid)是属于脂类的一类,特征是有一个四环的母核。所有甾体都是从乙酰辅酶A生物合成路径所衍生的。不同的甾体在其附在环上的官能团有所不同,而其基本结构都是有一个
  • 庭园园林也称庭园,是一个经过安排的空间,通常位于室外。庭园为小院子或庭前绿化空地,园林规模则较大,多半经由专门设计。内部种植许多植物,通常包括多种花卉,并且摆设一些其他的人为自
  • 拉封丹让·德·拉封丹(Jean de La Fontaine;1621年7月8日-1695年4月13日),法国诗人,以《拉封丹寓言》(Fables choisies mises en vers)留名后世。拉封丹生于法国中部埃纳省的蒂耶里堡(C
  • 惠更斯-菲涅耳原理惠更斯-菲涅耳原理(英语:Huygens–Fresnel principle)是研究波传播问题的一种分析方法,因荷兰物理学者克里斯蒂安·惠更斯和法国物理学者奥古斯丁·菲涅耳而命名。这个原理同时适
  • 多脱氧核糖核酸病毒科姬蜂病毒属 茧蜂病毒属多去氧核糖核酸病毒科(英语:Polydnaviridae)病毒以昆虫为宿主,包含2属53种。
  • 叶芽线虫属见内文叶芽线虫属(学名:Aphelenchoides)是线虫动物的一个属,其物种皆为双子叶植物的寄生性植物病原体。本属物种所引起的病变统称作“叶质线虫病”。Sanwal (1961)列出了35个物
  • span style=color:transparent;升结肠/span升结肠是结肠的一部分,位于腹腔右侧,是盲肠向上的延续,自右下腹部向斜后方上升,直到肝脏下缘以直角向左侧水平的横结肠移行。长约25厘米。