卡罗需-库恩-塔克条件

✍ dations ◷ 2025-11-11 15:38:25 #最优化

在数学中,卡罗需-库恩-塔克条件(英文原名:Karush-Kuhn-TuckerConditions常见别名:Kuhn-Tucker,KKT条件,Karush-Kuhn-Tucker最优化条件,Karush-Kuhn-Tucker条件,Kuhn-Tucker最优化条件,Kuhn-Tucker条件)是在满足一些有规则的条件下,一个非线性规划(Nonlinear Programming)问题能有最优化解法的一个必要条件。这是一个广义化拉格朗日乘数的成果。

考虑以下非线式最优化问题:

f ( x ) {\displaystyle f(x)} 是需要最小化的函数, g i ( x )   ( i = 1 , , m ) {\displaystyle g_{i}(x)\ (i=1,\ldots ,m)} 是不等式约束, h j ( x )   ( j = 1 , , l ) {\displaystyle h_{j}(x)\ (j=1,\ldots ,l)} 是等式约束, m {\displaystyle m} l {\displaystyle l} 分别为不等式约束和等式约束的数量。

不等式约束问题的必要和充分条件初见于卡罗需(William Karush)的硕士论文,之后在一份由W.库恩(Harold W. Kuhn)及塔克(Albert W. Tucker)撰写的研讨生论文出现后受到重视。

假设有目标函数,即是要被最小化的函数 f : R n R {\displaystyle f:\mathbb {R} ^{n}\rightarrow \mathbb {R} } ,约束函数 g i : R n R {\displaystyle g_{i}:\,\!\mathbb {R} ^{n}\rightarrow \mathbb {R} } h j : R n R {\displaystyle h_{j}:\,\!\mathbb {R} ^{n}\rightarrow \mathbb {R} } 。再者,假设他们都是于 x {\displaystyle x^{*}} 这点是连续可微的,如果 x {\displaystyle x^{*}} 是一局部极小值,那么将会存在一组所谓乘子的常数 λ 0 {\displaystyle \lambda \geq 0} , μ i 0   ( i = 1 , , m ) {\displaystyle \mu _{i}\geq 0\ (i=1,\ldots ,m)} ν j   ( j = 1 , . . . , l ) {\displaystyle \nu _{j}\ (j=1,...,l)} 令到

于上述必要和充分条件中,dual multiplier λ {\displaystyle \lambda } 可能是零。当 λ {\displaystyle \lambda } 是零时,这个情况就是退化的或反常的。因此必要和充分条件会将约束的几何特性而不是将函数自身的特点纳入计算。

有一定数量的正则性条件能保证解法不是退化的(即 λ 0 {\displaystyle \lambda \neq 0} ),它们包括:

虽然MFCQ不等同于CRCQ,但可证出LICQ=>MFCQ=>CPLD,LICQ=>CRCQ=>CPLD。于实际情况下,较弱的约束规范会被倾向使用,这是因为较弱的约束规范能提供较强的最优化条件。

假设目标函数 f : R n R {\displaystyle f:\mathbb {R} ^{n}\rightarrow \mathbb {R} } 及约束函数 g i : R n R {\displaystyle g_{i}:\mathbb {R} ^{n}\rightarrow \mathbb {R} } 皆为凸函数,而 h j : R n R {\displaystyle h_{j}:\mathbb {R} ^{n}\rightarrow \mathbb {R} } 是一仿射函数,假设有一可行点 x {\displaystyle x^{*}} ,如果有常数 μ i 0   ( i = 1 , , m ) {\displaystyle \mu _{i}\geq 0\ (i=1,\ldots ,m)} ν j   ( j = 1 , , l ) {\displaystyle \nu _{j}\ (j=1,\ldots ,l)} 令到

那么 x {\displaystyle x^{*}} 这点是一全局极小值。

相关

  • 机械加工机械加工是一种用加工机械对工件的外形尺寸或性能进行改变的过程。按被加工的工件处于的温度状态,分为冷加工和热加工。一般在常温下加工,并且不引起工件的化学或物相变化,称冷
  • 温带低压温带气旋,亦称为锋面气旋或中纬度气旋,是一种发生在地球中纬度地区的大尺度低压系统。温带气旋附带锋面,一段时间后将合并成为囚锢锋。“气旋”一词适用于各种各样的低压区,其中
  • 山雀山雀科(学名Paridae),是鸟纲雀形目中的一个科。原来该科下的鸟类大部分位于山雀属下,2013年拆分成对个属。按鸟类DNA分类系统,山雀科还包括攀雀科生物。
  • 能登岛能登岛(日语:能登島/のとじま Notojima */?)是石川县七尾市七尾湾内的一个岛。面积46.78km²。周长71.9km。在政区上过去属能登岛町,2004年10月1日合并为七尾市的一部分。也是
  • 马库斯·海耶斯里普马库斯·德尚·海斯利普(英语:Marcus Deshon Haislip,1980年12月22日-),美国NBA联盟职业篮球运动员。他在2002年的NBA选秀中第1轮第13顺位被密尔沃基雄鹿选中。
  • 谢司起义美国谢司起义(英文:Shays' Rebellion)或译为谢司暴动,是美国马萨诸塞州中西部地区在1786年—1787年发生的一场起义。因为起义领导者是丹尼尔·谢司,是前美国独立战争军官,因此这场
  • 河狐河狐(Lycalopex gymnocercus),又名巴拉圭狐或巴拉圭胡狼,是南美洲彭巴斯草原的一种伪狐。它们分布在阿根廷、乌拉圭、巴拉圭及巴西的南美洲中部。河狐像山狐,但较为细小,毛色呈灰
  • 埃及第十六王朝第 八第 十埃及第十六王朝是古埃及第二中间时期的一个王朝,以底比斯为中心,统治上埃及达70年之久。此王朝与第十五王朝、第十七王朝一起,共同组成第二中间时期。传统上认为第十
  • 安达有里安达 有里(日语:あだち ゆり,英语:Adachi Yuri),本名:长谷川 有里(日语:はせがわ ゆり,英语:Hasegawa Yuri),出生于东京都台东区浅草,为知名艺人安达祐实的母亲,2009年6月时,曾去观摩女
  • 戴维·托德戴维·托德(David Tod,1805年2月21日-1868年11月13日),美国政治家,曾任美国驻巴西公使(1847年-1851年)和俄亥俄州州长(1862年-1864年)。