Ac

✍ dations ◷ 2024-07-03 01:43:09 #Ac
6d1 7s22, 8, 18, 32, 18, 9, 2第一:499 kJ·mol−1 第二:1170 kJ·mol主条目:锕的同位素锕是一种放射性金属元素,符号为Ac,原子序为89。锕在1899年被发现,是首个得到分离的非原始核素(non-primordial radioactive element)。虽然钋、镭和氡比锕更早被发现,但是科学家到1902年才分离出这些元素。在元素周期表中,锕系元素始于锕,止于铹,一共有15种元素。锕是一种柔软的银白色放射性金属。在空气中,锕会迅速与氧气和水汽反应,在表面形成具保护性的白色氧化层。和大部分镧系元素和锕系元素一样,锕的氧化态一般是+3。在自然界中,只有少量的锕出现在铀矿石当中,主要为同位素227Ac,并进行β衰变,半衰期为21.772年。每一吨铀矿石约含0.2毫克的锕元素。由于锕和镧的化学和物理特性过于接近,因此要从矿石中分离出锕元素并不现实。科学家则是在核反应堆中以中子照射镭-226来产生锕的。锕因为稀少、昂贵,且具放射性,所以没有大的工业用途。目前锕被用作中子源,以及在放射线疗法中作为辐射源。法国化学家安德烈-路易·德贝尔恩(André-Louis Debierne)在1899年宣布发现新元素。在玛莉·居礼和皮埃尔·居礼从沥青铀矿中分离出镭之后,德贝尔恩接着从残留物中再分离出这一新元素。他认为该元素与钛和钍相似,并将其命名为“actinium”。德国化学家弗里德里希·奥斯卡·吉塞尔(Friedrich Oskar Giesel)则在1902年独立发现了锕元素。他认为锕与镧相似,并在1904年将其命名为“emanium”。科学家在比较德贝尔恩所得出的半衰期数据后,决定依最早发现者的意愿把该元素正式定名为“actinium”。锕的原文名称“actinium”源自古希腊语中的“ακτίς”、“ακτίνος”(“aktis”、“aktinos”),意为光线。其化学符号为Ac,但Ac也同时是其他化学品的缩写,如乙酰基、乙酸盐和乙醛,但锕与这些并无关系。锕是一种柔软的银白色放射性金属。其剪切模量估计与铅相近。锕的放射性很强,它放射出的高能粒子足以把四周的空气电离,因而发出暗蓝色光。锕的化学属性与包括镧在内的镧系元素相近,因此要将锕从铀矿石中分离出来十分困难。分离过程一般使用溶剂萃取法和离子层析法。锕是首个锕系元素。这些元素的特性比镧系元素更多元化,因此直到1945年,格伦·西奥多·西博格才提出为元素周期表加入锕系元素。这是自从德米特里·门捷列夫创造元素周期表以来对周期表最大的变动之一。锕在空气中会与氧气、水汽迅速反应,在表面产生白色的保护性氧化层。与大部分镧系和锕系元素一样,锕的氧化态通常是+3;Ac3+离子在溶液中无色。锕的电子排布是6d17s2,所以当失去3个电子后,就会形成稳定的闭壳层,与稀有气体氡一样。锕的+2态只出现在二氢化锕(AcH2)中。已知的锕化合物非常少,其中有三氟化锕(AcF3)、三氯化锕(AcCl3)、三溴化锕(AcBr3)、氟氧化锕(AcOF)、氯氧化锕(AcOCl)、溴氧化锕(AcOBr)、三硫化二锕(Ac2S3)、氧化锕(Ac2O3)和磷酸锕(AcPO4)等。除AcPO4以外,这些化合物都具有+3氧化态,且都有相对应的镧化合物。对应的镧和锕化合物在晶格常数上的差异不超过百分之十。上表中的a、b和c为晶格常数,Z为每晶胞所含的化学式单元数。密度并非实验数据,而是从晶体参数中计算得出的。在真空中把氢氧化锕加热至500°C或把草酸锕加热至1100°C,可制成氧化锕(Ac2O3)。氧化锕的晶体结构与大部分三价稀土金属的氧化物同型。三氟化锕的合成反应可以在液态或固态下进行。前者在室温下进行,需将氢氟酸加入含有锕离子的溶液中。后者需对锕金属施以氟化氢气体,反应要在700°C下进行,并必须使用全铂制器材。在900至1000°C下,三氟化锕会和氢氧化铵反应形成氟氧化锕(AcOF)。虽然三氟化镧在空气中以800°C燃烧一小时后就可以产生氟氧化镧,但是类似的方法无法产生氟氧化锕,而是会把三氟化锕熔解。:87–88氢氧化锕或草酸锕与四氯化碳在960°C以上温度反应会产生三氯化锕。同样,三氯化锕与氢氧化铵在1000°C反应会形成氯氧化锕。但与氟氧化锕不同的是,三氯化锕在氢氯酸溶液中用氨点燃就可以产生氯氧化锕。溴化铝与氧化锕反应后,会形成三溴化锕:在500°C加入氢氧化铵,可以产生溴氧化锕(AcOBr)。三氯化锕在300°C下经钾还原后,可形成氢化锕,其结构可从氢化镧(LaH2)的结构推测而得。该反应中氢的来源不明。:43在含锕的氢氯酸溶液中加入磷酸二氢钠(NaH2PO4),会产生白色的半水合磷酸锕(AcPO4·0.5H2O)。草酸锕和硫化氢气体在1400°C受热几分钟,会产生黑色的硫化锕(Ac2S3)。自然产生的锕元素由放射性同位素227Ac组成。锕一共有36种已知同位素,全部都具有放射性。这些同位素的原子量介乎206 u(206Ac)和236 u(236Ac)。其中最稳定的有:227Ac(半衰期为21.772年)、225Ac(10.0天)和226Ac(29.37小时)。其余的同位素的放射性半衰期都小于10小时,大部分甚至小于1分钟。寿命最短的锕同位素是217Ac,其半衰期只有69纳秒,会进行α衰变和中子捕获。锕拥有两个亚稳态(同核异构体)。纯化后的227Ac在185天后与衰变产物达成平衡。它主要进行β衰变(98.8%),以及少量的α衰变(1.2%)。这些衰变的产物都属于锕衰变系。227Ac发射的β粒子能量较低(46 keV),α辐射的强度较低,可用样本也一般很少,所以很难直接探测到227Ac。因此科学家一般以探测其衰变产物的方法来推算227Ac的量。锕元素在地球上十分稀少,只有痕量的227Ac同位素出现在铀矿石中:每吨铀矿石只含有大约0.2毫克的锕。227Ac是锕衰变系中的其中一个短暂存在的同位素。该衰变链始于235U(或239Pu),止于稳定同位素207Pb。225Ac则是镎衰变系中短暂存在的同位素。该衰变链始于237Np(或233U),止于铊(205Tl)和近似稳定的铋(209Bi)。含有锕的矿石中也同时含有镧及其他镧系元素。然而这些元素的化学、物理特性与锕非常接近,再加上锕含量更为稀少,因此从矿石中分离出锕元素的做法并不具实际性,科学家也从未完全分离出锕。锕元素则通常是在核反应堆中用中子照射226Ra产生的,每次产量以毫克计。该反应的锕产量约为镭重量的2%。227Ac可再捕获中子,形成少量的228Ac。合成过后,锕需从镭以及其他的衰变产物中分离出来,这些产物包括钍、钋、铅和铋。第一种分离法使用噻吩甲酰三氟丙酮和苯的混合溶液。调整该溶液的pH值,可从含衰变产物的溶液中萃取出特定的元素(锕需要pH 6.0左右)。另一种分离法是在硝酸中以适当的树脂进行负离子交换法,先把镭和锕与钍分离开来(分离系数为1百万),再用正离子交换树脂和硝酸洗脱液把锕从镭中提取出来(系数为100)。德国和澳洲的科学家在2000年首次人工合成225Ac。德国超铀元素研究所所使用的是回旋加速器,而澳洲的研究人员则使用位于悉尼圣乔治医院的直线加速器。其合成方法为,对镭-226目标体进行20至30 MeV能量氘离子撞击。这一反应同时会产生半衰期为29小时的226Ac同位素,但由于225Ac的半衰期有10天,所以前者不会对后者造成不纯。225Ac是一种稀有的同位素,在放射线疗法中有潜在的用途。在1100至1300°C间以锂气体对氟化锕进行还原反应,可以产生锕金属。太高的温度会使产物气化,而太低温则会导致反应不能完全进行。锂的氟化物挥发性比其他碱金属的高,因此最适合用于这一反应中。由于存量稀少,价格昂贵,所以锕目前并无重要的工业用途。227Ac放射性很强,因此有潜力用于放射性同位素热电机中,应用范围包括航天器。227Ac的氧化物和铍压制后可以作为高效能中子源,其活度高于一般的镅﹣铍和镭﹣铍中子源。这些应用利用的其实是227Ac的衰变产物。进行β衰变后所产生的同位素会释放α粒子,而铍则用于捕获这些α粒子,并放出中子。铍的(α,n)核反应截面较高,因此能高效地将α粒子转换为中子。该反应的公式如下:227AcBe可用于中子水分仪中,以测量土壤中的水分以及在建造公路时进行湿度、密度的质量检验。这类探测仪在测井、中子照相、断层摄影术及其他放射性化学范畴中都有应用的空间。225Ac在医学中用于制造213Bi,或直接作放射线疗法的辐射源。225Ac的半衰期为10天,比213Bi的46小时更适合作放射线治疗。225Ac及其衰变产物所释放的α粒子可以杀死身体内的癌细胞。最大的困难在于,简单的锕配合物经静脉注射进入体内后,会积累在骨骼和肝脏中,并停留数十年。持续的辐射在杀死癌细胞后,会引发新的突变。要避免这种问题,可将225Ac与螯合剂结合,例如柠檬酸、乙二胺四乙酸(EDTA)和二乙烯三胺五乙酸(DTPA)。这可降低锕在骨骼中的积累,但从身体排泄的量仍然不高。改用HEHA或耦合至曲妥珠单抗的DOTA(1,4,7,10-四氮杂环十二烷-1,4,7,10-四羧酸)等螯合剂可以增加锕的排泄量。曲妥珠单抗是一种单克隆抗体,能够干扰HER2/neu受体。科学家把锕与DOTA结合后注射到老鼠体内,发现疗法有效对抗白血病、淋巴瘤、乳癌、卵巢癌、神经母细胞瘤和前列腺癌。227Ac的半衰期为21.77年,可用来研究海水的缓慢垂直混合作用。这种水流的速度大约为每年50米,因此直接测量是无法得到足够的精度的。科学家通过探测各同位素在不同深度的相对比例变化,可以推算出混合作用的发生速率。具体的物理原理如下。海水含有均衡分布的235U。其衰变产物231Pa会慢慢沉淀到海底,所以其浓度会随深度增加,并在一定的深度以下维持恒等。231Pa再衰变成227Ac。混合作用会把海底的227Ac提升上来,因此227Ac的浓度随深度一直增加至海底。科学家分析231Pa和227Ac的浓度﹣深度关系,可以间接研究海水的混合作用。227Ac的放射性极强,因此有关的实验都必须在专业实验室的手套箱中进行。当三氯化锕经静脉注射进入老鼠体内后,约33%的锕元素积累在骨骼中,50%进入肝脏。其毒性比镅和钚稍低。

相关

  • 热袍菌门热袍菌门(Thermotogae),又译作栖热袍菌门,是一类嗜热或者超嗜热细菌,其细胞外面有一层“袍”一样的膜包裹,可以利用碳水化合物。不同的种类可适应不同的盐浓度和氧含量。重要的
  • 皮肤皮肤,包住脊椎动物的软层,是组织之一,在人体是最大的器官。皮肤挡住外来侵入,亦保住水分。有保暖、阻隔、感觉之用。皮肤的作用因物种而异,有保暖、保护色、吸引异性等作用。各物
  • ICD人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学国际疾病与相关健康问题统计分类(英语:I
  • 心脏移植心脏移植手术是一种内脏器官移植的心脏外科手术,不同于其它器官移植手术,在征得供体本人及亲属同意的前提下,心脏移植手术一般是将已判定为脑死亡并配型成功的人类的心脏完整取
  • 抑菌药抑菌药(英语:bacteriostatic agent/drug)是指具有抑制细菌繁殖药效的抗菌药物。与抑菌药相对的一个概念是杀菌药,即能起杀灭细菌作用的抗菌药物。不过抑菌药与杀菌药并非严格对
  • 盘嵴亚界古虫界(学名:Excavata)是单细胞生物的一个主要超级群组,属于真核生物域,由汤玛斯·卡弗利尔-史密斯于2002年引入的一个新的支序亲缘学分类。古虫界包含了许多自由生存或共生的原
  • 中间宿主中间宿主(intermediate host或secondary host)是指寄生物的幼虫、童虫或于无性生殖阶段时用以寄生的物种。如需两个以上中间宿主,则依顺序称第一、第二中间宿主等。 这类宿主也
  • 肾结石肾结石(英语:Kidney stones)是尿液中的矿物质结晶沉积在肾脏里,有时会移动到输尿管。它们的体积小至沙粒般,也有些大到像个高尔夫球。较小的肾结石常会随尿液排出体外,但如果直径
  • 抗菌药物抗细菌药(英语:antibacterial)也称为“抗细菌剂”,是一类用于抑制细菌生长或杀死细菌的药物。在不引起歧义的情况下,抗细菌药也可简称为“抗菌药”,包括抗生素(英语:antibiotic) 由微
  • 地区法院议长:南希·裴洛西(民主党) 多数党领袖(英语:Party leaders of the United States House of Representatives):斯坦利·霍耶(民主党) 少数党领袖(英语:Party leaders of the United Sta