首页 >
八大行星
✍ dations ◷ 2024-11-05 19:38:06 #八大行星
太阳系是一个受太阳引力约束在一起的行星系统,包括太阳以及直接或间接围绕太阳运动的天体。在直接围绕太阳运动的天体中,最大的八颗被称为行星,其余的天体要比行星小很多,比如矮行星、太阳系小行星和彗星。轨道间接围绕太阳运动的天体是卫星,其中有两颗比最小的行星水星还要大。太阳系的形成大约始于46亿年前一个巨型星际分子云的引力坍缩。太阳系内大部分的质量都集中于太阳,余下的天体中,质量最大的是木星。位于太阳系内侧的是四颗较小的行星,分别是水星、金星、地球和火星,它们被称为类地行星,主要由岩石和金属构成。外侧的四颗行星被称为巨行星,其质量比类地行星要大得多。其中最大的两颗是木星和土星,它们都是气态巨行星,主要成分是氢和氦。最外侧的两颗行星是天王星和海王星,它们是冰巨星,主要由一些熔点比氢和氦更高的挥发成分组成,比如水、氨和甲烷。几乎所有的行星都在靠近黄道平面的圆轨道上运行。太阳系也包含一些较小的天体位于火星和木星轨道之间的主小行星带,其中的大部分天体都是像类地行星那样由岩石和金属组成。在海王星轨道之外是柯伊伯带和离散盘,包含了有大量的海王星外天体,主要由冰组成,再往外还有新发现的类塞德娜天体(sednoid)。在这些天体中,有几十甚至上万颗足够大的天体,能靠自身的重力形成球体,,这些天体被称为为矮行星。已经被确认是矮行星的包括小行星带的谷神星,和海王星外天体的冥王星和阋神星。除了这两个区域,还有大量的小型天体自由的运动在两个区域之间,包括彗星,还有半人马小行星和行星际尘云。有6颗行星、4颗以上的矮行星和一些小天体都有天然的卫星环绕着。通常都依据月球被称为卫星。太阳系外侧的每颗行星都被由尘埃和小天体构成的行星环环绕着。太阳风是向太阳外流出的带电粒子流,在星际物质中形成了一个气泡状区域,被称为太阳圈(或日球层)。日球层顶是太阳风和星际物质的压力达到平衡的位置,它延伸到离散盘的边缘。奥尔特云,被认为是长周期彗星的来源地,其位置可能比日球层顶还要远1000多倍。太阳系位于银河系的猎户臂上,与银河系中心的距离约26,000光年。轨道环绕太阳的天体被分为三类:行星、矮行星、和太阳系小天体。行星是环绕太阳且质量够大的天体。这类天体:能成为行星的天体有8个:水星、金星、地球、火星、木星、土星、天王星和海王星。在2006年8月24日,国际天文联合会重新定义行星这个名词,首次将冥王星排除在大行星外,并将冥王星、谷神星和阋神星组成新的分类:矮行星。矮行星不需要将邻近轨道附近的小天体清除掉,其他可能成为矮行星的天体还有塞德娜、厄耳枯斯、和创神星。从第一次发现的1930年直至2006年,冥王星被当成太阳系的第九颗行星。但是在20世纪末期和21世纪初,许多与冥王星大小相似的天体在太阳系内陆续被发现,特别是阋神星更明确的被指出比冥王星大。环绕太阳运转的其他天体都属于太阳系小天体。卫星(如月球之类的天体),由于不是环绕太阳而是环绕行星、矮行星或太阳系小天体,所以不属于太阳系小天体。天文学家在太阳系内以天文单位(AU)来测量距离。1AU是地球到太阳的平均距离,大约是149,597,871公里(92,955,807英里)。冥王星与太阳的距离大约是39AU,木星则约是5.2AU。最常用在测量恒星距离的长度单位是光年,1光年大约相当于63,240天文单位。行星与太阳的距离以公转周期为周期变化著,最靠近太阳的位置称为近日点,距离最远的位置称为远日点。有时会将太阳系非正式地分成几个不同的区域:“内太阳系”,包括四颗类地行星和主要的小行星带;其余的是“外太阳系”,包含小行星带之外所有的天体。其它的定义还有海王星以外的区域,而将四颗大型行星称为“中间带”。在历史上的很长一段时期,人类都没有认识或理解到太阳系的概念。直到中世纪晚期的文艺复兴时代,大多数人仍认为地球是静止不动的,处于宇宙的中心,与那些穿过天空的物体是截然不同的。古希腊的哲学家阿里斯塔克斯曾经推测了日心说体系,但是,直到尼古拉·哥白尼才提出了第一个日心说宇宙的数学模型。到了17世纪,伽利略·伽利莱、约翰内斯·开普勒和艾萨克·牛顿拓展了人们对物理学的理解,人们开始普遍接受地球围绕太阳运动的观念,认为地球和其他行星遵循同样的物理规律。望远镜的发明,使人们发现了更多的行星和卫星。望远镜改进和无人航天器的应用,使人们得以对其他行星的地质现象进行研究,比如山、坑穴等,另外还可以气象现象进行观察,比如云、沙尘暴和冰帽等。太阳系的第一次探测是由望远镜开启的,始于天文学家首度开始绘制这些因光度暗淡而肉眼看不见的天体之际。伽利略是第一位发现太阳系天体细节的天文学家。他发现月球的火山口,太阳的表面有黑子,木星有4颗卫星环绕着。惠更斯追随着伽利略的发现,发现土星的卫星泰坦和土星环的形状。后继的乔凡尼·多美尼科·卡西尼发现了4颗土星的卫星,还有土星环的卡西尼缝、木星的大红斑。爱德蒙·哈雷认识到在1705年出现的彗星,实际上是每隔75-76年就会重复出现的一颗彗星,现在称为哈雷彗星。这是除了行星之外的天体会围绕太阳公转的第一个证据。1781年,威廉·赫歇耳在观察一颗它认为的新彗星时,戒慎恐惧的宣布在金牛座发现了彗星。事实上,它的轨道显示是一颗行星,天王星,这是第一颗被发现的行星。1801年,朱塞普·皮亚齐发现谷神星,这是位于火星和木星轨道之间的一个小世界,而一开始他被当成一颗行星。然而,接踵而来的发现使在这个区域内的小天体多达数以万计,导致他们被重新归类为小行星。到了1846年,天王星轨道的误差导致许多人怀疑是不是有另一颗大行星在远处对它施力。埃班·勒维耶的计算最终导致了海王星的发现。在1859年,因为水星轨道的近日点有一些牛顿力学无法解释的微小运动(“水星近日点进动”),因而有人假设有一颗水内行星祝融星(中文常译为“火神星”)存在;但这一运动最终被证明可以用广义相对论来解释,但某些天文学家仍未放弃对“水内行星”的探寻。为解释外行星轨道明显的偏差,帕西瓦尔·罗威尔认为在其外必然还有一颗行星存在,并称之为X行星。在他过世后,他的罗威尔天文台继续搜寻的工作,终于在1930年由汤博发现了冥王星。但是,冥王星是如此的小,实在不足以影响行星的轨道,因此它的发现纯属巧合。就像谷神星,他最初也被当作行星,但是在邻近的区域内发现了许多大小相近的天体,因此在2006年冥王星被国际天文学联合会重新分类为矮行星。在1992年,夏威夷大学的天文学家大卫·朱维特和麻省理工学院的珍妮·刘发现1992 QB1,被证明是一个冰冷的、类似小行星带的新族群,也就是现在所知的柯伊伯带,冥王星和凯伦都只是其中的成员。米高·布朗、乍德·特鲁希略和大卫·拉比诺维茨在2005年宣布发现的阋神星是比冥王星大的离散盘上天体,是在海王星之后绕行太阳的最大天体。自从进入太空时代,许多的探测都是各国的太空机构所组织和执行的无人太空船探测任务。太阳系内所有的行星都已经被由地球发射的太空船探访,进行了不同程度的各种研究。虽然都是无人的任务,人类还是能观看到所有行星表面近距离的照片,在有登陆艇的情况下,还进行了对土壤和大气的一些实验。第一个进入太空的人造天体是前苏联在1957年发射的史泼尼克一号,成功的环绕地球一年之久。美国在1959年发射的探险家6号,是第一个从太空中送回影像的人造卫星。第一个成功的飞越过太阳系内其他天体的是月球1号,在1959年飞越了月球。最初是打算撞击月球的,但却错过了目标成为第一个环绕太阳的人造物体。水手2号是第一个环绕其他行星的人造物体,在1962年绕行金星。第一颗成功环绕火星的是1964年的水手4号。直到1974年才有水手10号前往水星。探测外行星的第一艘太空船是先驱者10号,在1973年飞越木星。在1979年,先驱者11号成为第一艘拜访土星的太空船。旅行者计划在1977年先后发射了两艘太空船进行外行星的大巡航,在1979年探访了木星,1980和1981年先后访视了土星。旅行者2号继续在1986年接近天王星和在1989年接近海王星。旅行者太空船已经远离海王星轨道外,在发现和研究终端震波、日鞘和日球层顶的路径上继续前进。依据NASA的资料,两艘旅行者太空船已经在距离太阳大约93天文单位处接触到终端震波。还没有太空船曾经造访过柯伊伯带天体。而在2006年1月19日发射的新视野号将成为第一艘探测这个区域的人造太空船。这艘无人太空船预计在2015年飞越冥王星。如果这被证明是可行的,任务将会扩大以继续观察一些柯伊伯带的其他天体。在1966年,月球成为除了地球之外第一个有人造卫星绕行的太阳系天体(月球10号),然后是火星在1971年(水手9号),金星在1975年(金星9号),木星在1995年(伽利略号,也在1991年首先飞掠过小Gaspra),爱神星在2000年(会合-舒梅克号),和土星在2004年(卡西尼号-惠更斯号)。信使号太空船在2011年3月18日开始第一次绕行水星的轨道;同一时间,黎明号太空船将设定轨道在2011年环绕灶神星,并在2015年探索谷神星。第一个在太阳系其它天体登陆的计划是前苏联在1959年登陆月球的月球2号。从此以后,抵达越来越遥远的行星,在1966年计划登陆或撞击金星(金星3号),1971年到火星(火星3号),但直到1976年才有维京1号成功登陆火星,2001年登陆爱神星(会合-舒梅克号),和2005年登陆土星的卫星泰坦(惠更斯)。伽利略太空船也在1995年抛下一个探测器进入木星的大气层;由于木星没有固体的表面,这个探测器在下降的过程中被逐渐增高的温度和压力摧毁掉。载人的探测目前仍被限制在邻近地球的环境内。第一个进入太空(以超过100公里的高度来定义)的人是前苏联的太空人尤里·加加林,于1961年4月12日搭乘东方一号升空。第一个在地球之外的天体上漫步的是美国宇航员尼尔·阿姆斯特朗,它是在1969年7月21日的阿波罗11号任务中,于月球上完成的。美国的航天飞机是能够重复使用的太空船,前苏联也曾经开发航天飞机并已完成一次的无人航天飞机升空任务,苏联瓦解后,俄罗斯无力继续维护任其荒废。第一个空间站是前苏联的礼炮1号。在2004年,太空船1号成为在私人的基金资助下第一个进入次轨道的太空船。同年,美国总统乔治·沃克·布什宣布太空探测的远景规划:替换老旧的航天飞机、重返月球、甚至载人前往火星,但这计划在几年后遭到终止。太阳系中最主要的成员是太阳,它是一颗G2主序星,占据了太阳系所有已知质量的99.86%,太阳系内的天体在太阳引力的约束下运动。剩余的质量中,有99%的质量由太阳系的4颗大天体,即巨行星组成,而木星和土星又合占了其中的90%以上。太阳系中其余的天体(包括4颗类地行星、矮行星、卫星、小行星和彗星),总质量还不到太阳系的0.002%。环绕太阳运转的大天体都躺在地球轨道平面,称为黄道附近的平面。行星都非常靠近黄道,而彗星案柯伊伯带天体通常都有明显的倾斜角度。所有的行星和大多数的太阳系其它天体都以相同的方向绕着太阳转动(从地球的北极鸟瞰是逆时针方向),但也有逆向的,像是哈雷彗星。太阳系内已探测到的区域总体上分为:太阳、小行星带以内的四颗较小的行星和柯伊伯带环绕的四颗巨行星。天文学家有时会非正式的将这些结构分成不同的区域。内太阳系包括四颗类地行星和小行星带。外太阳系在小行星带以外的区域,包括了四颗巨行星。自从柯伊伯带被发现以后,人们认为太阳系的最外层空间和海王星外侧附近的区域显著不同。在太阳系的天体多数都有它们自己的次系统,环绕行星的天体称为卫星(其中有两颗比水星大),并且4颗巨行星都有由极小的微粒构成极薄的行星环一起围绕着。多数天然的大卫星是同步转动,永远以同一面朝向它的母体。开普勒定律描述天体公转太阳的轨道。根据开普勒定律,天体沿着各自的椭圆轨道公转太阳,而太阳位在其中的一个焦点上。越靠近太阳的天体(半长轴越短),因为受到较大的太阳引力,运行的轨道速度也就越快。在一个椭圆轨道上,天体与太阳的距离会随着公转的年(周期)不断的变化。它在轨道上最接近太阳的位置称为它的近日点,距离太阳最远的位置称为远日点。行星的轨道接近圆形,但许多彗星、小行星和柯伊伯带天体运行在极度椭圆的轨道。这些天体的位置可以使用数值模拟来预测。虽然太阳主宰著太阳系的质量,但它只占有2%的角动量。行星,以木星为主,以它们的质量占有其余绝大部分的角动量,还有距离太阳遥远的彗星,对角动量可能也有重大的贡献。太阳,几乎囊括太阳系中所有的物质,大约98%是由氢和氦组成。木星和土星,几乎拥有其余的全部质量,主要的组成成分也是氢和氦。太阳系组成的其他成分,受到热和光压的影响,成梯度的存在太阳系,越靠近太阳的是熔点越高的元素,离太阳越远的距离,组成物质的熔点也越低。挥发性物质能够在外太阳系凝聚的边界称为冻结线,大约在距离太阳5AU之处。内太阳系的天体大多数的成分是岩石,高熔点的化合物,如硅酸盐、铁或镍,几乎都是在原行星云的条件下就凝聚成固体的物质。木星和土星的主要成分是气体,具有极低的熔点和高蒸气压,像是氢、氦和氖,它们在星云阶段都是气体的状态。冰,像是水、甲烷、氨和二氧化碳,熔点都在数百K,它们可以以冰、液体或气体存在太阳系不同的位置,而在星云阶段它们既可以是固体,也可以是气体状态。巨行星的卫星和天王星与海王星(所谓的冰巨星)以及海王星轨道外众多的小天体,主要的成分是冰冷的物质;这些气体和冰统称为挥发物。从地球到太阳的距离被定义为 1天文单位(150,000,000千米),也就是1单位。作为对比,太阳的半径是0.0047 AU(700,000 km)。因此,太阳的体积只占地球轨道半径这个球体积的0.00001%(10−5 %),而地球的体积又大约只是太阳的百万分一(10−6)。木星,太阳系最大的行星,与太阳的距离是5.2天文单位(780,000,000千米),半径是71,000 km(0.00047 AU),而距离最远的行星,海王星与太阳的距离是30 AU(4.5×109 km)。有少数的例外,距离太阳越远的行星或环带,轨道与轨道之间的距离,也就是从一个轨道到下一个轨道间的间隔,就越大。例如,金星到太阳的距离比水星远0.33AU,而土星到太阳的距离比木星远4.3AU,海王星又比天王星要远10.5AU。有些方程(例如提丢斯-波得定则)企图建立与确定这些轨道之间的关联性,但没有可以被接受的理论。在这一章节开头的影像显示了在不同尺度上的太阳系各种组成的轨道。一些太阳系模型试图传达涉及人类关系的相对尺度。有些规模很小(可能是机械的 -称为太阳系仪)-而有些会扩展而跨越城市或区域。尺度最大的模型,瑞典太阳系模型,使用位于斯德哥尔摩110米(361英尺)的爱立信球形体育馆作为太阳的替代物,接下来的规模是距离40公里(25英里)的阿兰达国际机场一个 7.5米(25英尺)的球;目前已知最远的天体塞德娜,是在912公里(567英里)远的一个10公分(4英寸)的小球。如果,太阳至海王星的距离是100米的尺度,那么太阳只是一个直径大约3公分的小球(大约高尔夫球直径的三分之二),所有巨行星的尺度都将小于3毫米,而地球和其他类地行星的直径在这种规模下会比一只跳蚤(0.3毫米)还要小得多。太阳系中所选择的天体与太阳的距离。每个条形的左右边缘分别对应于天体近日点和远日点,长条表示高的轨道离心率。太阳的半径约70万公里,木星(最大的行星)约7万公里,都太小,在这个图像中显示不出来。将距离缩小到只有八大行星与哈雷彗星的范围:若将视野缩得更小,只限于内行星的范围:太阳系形成于45亿6,800万年前的大型分子云的引力坍塌区域中。这个初始的元气可能有数光年大,并且诞生好几颗恒星。由于是典型的分子云,其成分主要是氢与一些氦,还有前几代恒星融合的少量重元素。当这个区域将形成太阳系前,被称为前太阳星云,坍缩时因为角动量守恒,使它转动得越来越快。中心,集中了大部分的质量,成为比周围环绕的盘面越来越热的区域。收缩的星云越转越快,它开始变得扁平,成为原行星盘,直径大约200AU,在中心是高温、高密度的原恒星。行星经由盘中的吸积形成,在尘埃和气体的引力相互吸引下,逐渐凝聚形成越来越大的天体。在太阳系的早期可能有数以百计的原行星,但因合并或摧毁,留下行星、矮行星和残余物构成的小天体。
硅酸盐和金属的熔点很高,只有它们能在内太阳系的温度下保持固体形态,这些物质最终组成了岩态行星,分别是水星、金星、地球和火星。由于金属成分在原始太阳星云中只占据了一小部分,类地行星都没有发展得很大。冻结线在火星与木星之间的位置,巨行星(木星、土星、天王星和海王星)形成于冻结线的外侧,这里的温度很低,挥发物质能以固态形式存在。这一区域的冰比组成类地行星的金属和硅酸盐更多,所以该区域的行星发育得很大,可以捕获大量的氢和氦,它们是太阳系中含量最丰富的元素。太阳系中余下的那些不可能组成行星的物质聚集在小行星带、柯伊伯带和奥尔特云区域。尼斯模型解释了这些区域的形成原理,以及外侧的行星可能在形成后又受到各种复杂引力的作用才到了它们今天的位置。最初的五千万年内,在原恒星中心处,氢的密度和压力都大得足以发生热核反应。在反应过程中,氢的温度、反应速率、压力和密度都一直在增加,直到流体的热压力与引力相抵消,达到静力平衡状态。到此,太阳就成了一颗主序星。太阳的主序星阶段从开始到结束约有100亿年,而其他的所有阶段,包括残骸生命期等总共只有20亿年。从太阳出发的太阳风形成了日球层,并将残余的气体和尘埃从原行星盘吹入星际空间,阻碍了行星的发育。此后,太阳越来越亮,主序星早期的亮度只有现在的70%。太阳将基本保持现在的状态,直到五十亿年后,位于太阳中心的氢完全转化为了氦。这也标志着太阳主序星阶段结束了。这时,太阳的核心开始崩塌,其输出的能量比现在更大。太阳最外层的直径将扩张到目前的260倍左右,太阳成了一颗红巨星。由于表面积的急剧扩张,太阳表面的温度将比主序星阶段低很多(最低大约为2,600K)。不断扩大的太阳将会使水星蒸发掉,并且使得地球的环境不再适合居住。最终,太阳核心的温度高得足以使氦发生聚变,太阳在燃烧氢的时候会有小部分的时间来燃烧氦。太阳的质量还不足以使得比氢氦更重的元素发生聚变反应,太阳核心的反应将会变弱。太阳外层物质会散逸到太空,剩下的部分形成了白矮星,它的密度特别大,质量约为太阳的一半,但体积和地球差不多。散逸出去的外层物质形成了所谓的行星状星云,将一些组成太阳的物质返还给星际空间,但这时其中会包含像碳之类的重元素。太阳是太阳系内的恒星,和系统中目前质量最大(332,900地球质量)的原件。在核心产生足够高的温度和压力,以维持氢合成 氦的核聚变反应,使它成为一颗主序星。这会释放出大量的能量,主要是辐射至空间的电磁波,辐射的峰值在可见光的波段。太阳是一颗G2型主序星。越热的主序星越明亮,太阳的温度介于炙手可热的恒星和最冷的恒星之间。比太阳更热和更亮的恒星很罕见,在银河系中85%的恒星都是比太阳暗淡且低温的红矮星。太阳是第一族恒星;比第二族恒星拥有更高丰度比氦重的元素(在天文用语是金属)。比氢和氦重的元素是在恒星核心的核聚变过程中形成的,经由古老的恒星爆炸才释放进宇宙中。最老的恒星只有少量的金属,越晚诞生的恒星金属的含量就越多。这高金属量是太阳能发展出行星系统极为重要的关键,因为行星是由“金属”的吸积形成。太阳系绝大部分的区域都接近真空,已知的只有行星际物质。随着光,太阳持续的辐射出带电粒子(等离子体),也就是所谓的太阳风。这股粒子流以大约每小时150万公里的速度向外传播,创造出扩散至100AU范围的稀薄大气层,弥漫着行星际物质(参见 § 太阳圈)。太阳表面的活动,像是闪焰和日冕大量抛射,扰动着太阳圈,创造太空天气和造成地磁风暴。太阳圈内最大的结构是太阳圈电流片,是由太阳自转活动带动的磁场,在行星际物质间转动产生的螺旋。地球磁场阻止地球大气层被太阳风剥夺。金星和火星没有磁场,因此太阳风造成它们的大气层逐渐流失进入太空。日冕大量抛射和相似的事件,从太阳表面吹出大量的物质和磁场。这种磁场和物质与地球磁场的相互作用,使带电粒子像从过漏斗般地进入地球大气层,在靠近磁极的附近创造出可见的极光。太阳和行星的磁场(对于那些有它们的行星)屏蔽掉了部分从星际空间进入太阳系,被称为宇宙射线的高能粒子。在非常长时间的尺度,宇宙射线在星际物质的密度和太阳磁场的强度各不相同,所以宇宙射线渗入太阳系的普及程度也不进相同,有许多仍是未知的力量。行星际物质中至少有两个圆盘状的区域像是宇宙尘的家。第一个在内太阳系,是形成黄道光的黄道尘云。它可能是小行星带内的小行星受到行星引力扰动,造成小行星互相碰撞形成的。第二个尘埃云从大约10AU延伸至40AU,并且可能是柯伊伯带内的类似碰撞形成的。内太阳系是包括类地行星和小行星带的区域。主要成分是硅酸盐和金属,相对而言是太阳系内较靠近太阳的区域,而整个区域的半径小于木星轨道和土星轨道之间的距离。这个区域也在冻结线,距离太阳略小于5AU(大约7亿公里)的范围内。4颗类地行星或内行星有致密的岩石成分,有少许或没有卫星,也没有环系统。它们很大程度上是由耐熔质的矿物,如硅酸盐组成地壳和地幔;和金属,例如铁和镍构成它们的核心。4颗行星中有3颗(金星、地球和火星)有大气层,会产生实质的天气变化;所有的行星表面都有撞击坑和地质构造的特征,像是裂谷和火山。不要将内行星和内侧行星这两个名词混淆了,后者是指比地球更靠近太阳的行星(也就是水星和金星)。除了最大的谷神星之外,所有的小行星都属于太阳系小天体,并且主要成分都是耐熔质的岩石和金属的矿物,与些许的冰。它们的大小从几米到几百公里都有。小于一米的小行星通常称为流星体或微流星体(榖粒的尺寸),只是依据大小的不同,是有点过于武断的定义。小行星带分布在火星轨道和木星轨道间,距离太阳2.3AU至3.3AU的范围内。它被认为是受到木星的引力干扰而不能凝聚成型的失败行星,是太阳系形成时遗留下的物质。小行星带包含成千上万,甚至数百万颗直径过一公里的小天体。尽管这样,估计小行星带的总质量不会超过地球的千分之一。小行星带是非常空旷的,太空船经常飞越这个区域,都未曾发生任何事件。外太阳系区域是巨行星和它们的大卫星的家,半人马小行星和许多短周期彗星的轨道也在这一区。由于它们离太阳更远,外太阳系包含的固体物质比内太阳系含有更多的挥发性物质,像是水、氨和甲烷的比例都较高,而因为温度低,使得这些化合物都成为固态。外面的4颗行星,或是巨行星(过去常称为类木行星),它们囊括已知轨道环绕太阳天体的99%质量。木星和土星合起来的质量超过地球的400倍,而且绝大部分是氢和氦;天王星和海王星的规模也远较地球大(每颗都超过10地球质量),而主要由冰组成。出于这个原因,有些天文学家建议它们应属于自己的别:“冰巨星”。虽然只有土星环可以很容易地观测到,但所有这4颗巨行星都有环。地外行星这个词是指地球外侧的行星,因此包括4颗外行星和火星。半人马小行星是类似冰彗星的天体,轨道半长轴介于木星(大于5.5AU)和 海王星(小于30AU)之间。已知最大的半人马小行星是(10199 女凯龙星,直径约250公里。第一颗被发现的半人马小行星是(2060) 凯龙,但因为在接近太阳时表现出彗星的特质,已经被重新分类为彗星(95P)。彗星是太阳系小天体,通常只有几公里的直径,成分大部分是挥发性冰。它们的轨道有很高的离心率,近日点在内行星的区域内,而远日点远在冥王星轨道之外。当一颗彗星进入内太阳系,会导致它冰冷的表面升华和电离,创造出彗发,和经常可以用肉眼看见,由气体和尘埃构成的长长彗尾。短周期彗星是轨道周期短于200年的彗星,长周期彗星的轨道周期可以长达数千年。短周期彗星被认为起源于柯伊伯带,长周期彗星,像是海尔-波普彗星,被认为起源于奥尔特云。许多彗星群体,像是克鲁兹族彗星,是从单一母彗星的解体。有些有着双曲线轨道的彗星,可能是来自太阳系外,但是很难精确的测量出它们的轨道。挥发性物质被太阳热耗尽的老彗星通常会被归类为小行星。在海王星轨道之外,还存在着海王星外天体、甜甜圈形状的柯伊伯带、冥王星和一些其它的矮行星,和部分和柯伊伯带重叠,但向盘面倾斜到达更远处的离散盘天体。整个地区仍是大量未探索的空间。它似乎是压到性的全部由数以千计的小天体组成 --最大的直径不到地球的五分之一,且质量远小于月球,主要由冰和岩石组成。这个地区有时被描述为“太阳系第三区”,包围着内太阳系和外太阳系。柯伊伯带是由大量碎屑组成,类似于小行星带,但是组成物体的主要成分是冰。它延伸在距离太阳30AU至50AU的空间之间,虽然估计其间包含直径数百米到数千米的矮行星,但主要还是由太阳系小天体组成。许多大的柯伊伯带天体,像是创神星、伐罗那和亡神星,当有近一步的资料后,可能会是矮行星。估计柯伊伯带有100,000颗直径大于50公里的小天体,但柯伊伯带的总质量只有地球的十分之一或甚至只有百分之一。许多柯伊伯带天体都有多颗卫星,和大多数的轨道都在黄道平面之外。柯伊伯带可以粗略的分成传统带和共振带。共振的是轨道周期和海王星的轨道周期偶简单的整数比(例如,海王星公转太阳三周,它公转两周;海王星公转两周,它公转一周)。其实海王星本身也是共振带中的一员;传统带的成员则是不与海王星共振,是散布在39.4至47.7天文单位范围内的天体。传统的柯伊伯带天体以被发现的第一颗这种天体,(15760) 1992 QB1,被分类为QB1。它们都在基本的位置附近,并且离心率都较低。离散盘,在黄道部分与柯伊伯带重叠,并进一步向外延伸,被认为是短周期彗星的来源。离散盘的天体被认为是在太阳系形成时,海王星早期向外迁移时受到引力影响,被喷出进入不稳定轨道。多数离散盘天体(SDOs)的近日点在柯伊伯带内,但远日点又远远超过(有些距离太阳
远达150AU)。离散盘天体的轨道对黄道面有着高度的倾斜,甚至于垂直黄道面。有些天文学家认为离散盘天体只是柯伊伯带的另一个区域,因此描述离散盘天体为“离散柯伊伯带天体”。也有些天文学家将半人马小行星归类为向内离散柯伊伯带天体,而一并将离散盘天体归类为向外离散柯伊伯带天体。太阳系和星际空间的分界点并不明确,因为在边界上有两股独立的力量:太阳风和太阳引力。太阳风影响的范围大约是太阳至冥王星距离的4倍,这是日鞘的位置,日球层的外侧边缘,也被认为是星际物质开始的位置。太阳的希尔球,引力能有效主导的范围,被认为还要向外延伸1,000倍,抵达理论上的奥尔特云所在之处。日球是一个星风泡,是太空中由太阳主导的区域,它辐射出的太阳风是带电的电粒子流,速度大约每秒400公里,直到随着太阳风碰撞到星际物质才会停止。与星际物质碰撞处会产生终端震波,迎风面的距离大约在80-100AU,顺风面则大约在200AU处。在这儿的风速会急遽放缓、凝结,并变得更为动荡,形成被称为日鞘的巨大椭圆形结构。这种结构被认为外观和行为非常像彗星的彗尾,在迎风面可以向外延伸到40AU的距离,而在顺风面可以延伸数倍于此的距离;来自卡西尼号和星际边界探测器的证据,建议是受到星际磁场的约束作用,因而被迫形成气泡的形状。日球层的外边界,日球层顶,是太阳风终止的最后位置,并且是星际空间的起点。旅行者1号和旅行者2号已经分别报告距离太阳在94AU和84AU之处进入日鞘,旅行者1号报告是在2012年8月进入日鞘。太阳圈外缘的形状和形式很可能受到与星际物质相互作用的流体动力学的影响,同时也受到在南端占优势的太阳磁场的影响;例如,它的形状在北半球比南半球多扩展了9个天文单位(大约15亿公里)。超越日球层顶,大约在230AU,存在着弓形激波,它是太阳在银河系中穿越时留下的等离子体。由于资料的缺乏,对本地星际空间的条件缺乏了解,预期当NASA的旅行者太空船穿越日球层顶时,将传送回有关辐射和太阳风的宝贵资料。由于日球层的遮蔽,能进入太阳系的宇宙线甚为稀少。一个NASA资助的团队已经着手开发将探测器送到日球层的“愿景任务”。塞德娜(与太阳平均距离520 AU)是一颗巨大、淡红色的天体,有着庞大且高度椭圆的轨道,近日点约在76AU,而远日点在940AU,绕行太阳一圈须时11,400年。米高·布朗在2003年发现这个天体,断言它不是离散盘或柯伊伯带的一部分,因为它的近日点离太阳太远了,不会受到海王星迁移的影响。他和其他的天文学家认为它是一个全新的族群,可以称为“远距独立天体”(distant detached objects,DDOs),包括近日点45AU,远日点415AU,公转周期为3,420年的2000 CR105。布朗的团队认为这个族群是来自内奥尔特云,因为它可能也是经历了类似的过程,使它们远离了太阳。虽然它的形状还没有测定,但塞德娜非常像一颗矮行星。第二颗确认的独立天体是在2012年发现的2012 VP113,它的近日点是81AU,但远日点只有塞德娜的一半,大约在400-500AU。奥尔特云是假设的球体云,大约从距离太阳50,000AU(约1光年)并延展至100,000AU(1.87光年),拥有高达1兆的冰天体,被认为是所有长周期彗星的来源。它被认为是被外层行星的引力作用从内太阳系逐出的彗星组成的。奥尔特云的天体运动的得非常缓慢,并且可能由罕见的事件摄动,例如碰撞、经过的恒星或星系潮汐的引力效应,施加于银河系等方式。大部分的太阳系仍然是未知的领域。估计太阳的引力场可以超越周围恒星占主导地位的引力作用范围大约是2光年(125,000AU)。较低估的奥尔特云半径则不会超过50,000AU。尽管已经在柯伊伯带和奥尔特云之间的空间范围内发现塞德娜,半径为数千AU的空间范围仍然是未经探测的区域;在水星和太阳之间的区域也仍然在研究中。在太阳系未知的区域内还可能发现新的天体。目前,已知最遥远的天体是威斯特彗星,远日点大约距离太阳70,000AU。当我们对奥尔特云更了解时,这可能会有所改变。太阳系位于直径约100,000光年,包含2000亿颗恒星的棒旋星系,银河系内,太阳的位置在银河系外侧,称为猎户-天鹅臂局部之一的螺旋臂。太阳距离银河中心约25,000至28,000光年,并且以大约220Km/s的速度在银河系中运动,大约2亿2500万年至2亿5000万年可以转银河一圈。这个转动周期称为太阳系的银河年。太阳向点,太阳通过星际空间的路径,目前是指向武仙座,靠近明亮的织女星的方向。黄道平面与银河平面的交角大约是60°太阳在银河系中内的位置是地球生命演化历程的一个因素。它的轨道接近圆形,并与邻近太阳的螺旋臂有着大致相同的速度,这给了地球生命很长一段稳定进化的时间因为。因为太阳几乎不会穿越螺旋臂,而螺旋臂聚集大量超新星、重力不稳定性和可能扰乱太阳系的辐射。太阳系也在银河的周边地区,远离银河系中心拥挤的区域。在中心附近,来自邻近恒星的引力拖拽,可以扰动奥尔特云并发送许多彗星进入内太阳系,产生碰撞与危害地球上生命的潜在性灾难与影响;银河中心的强烈辐射也会干扰复杂生命的发展。即使在当前太阳系所在的位置,一些科学家的推测,在最近的35,000年,最接近的超新星可能造成一些不利生命发展的因素,从恒星的核心驱散出来的放射性辐射、尘埃颗粒和较大的彗星状结构,可能被扔向太阳。Fluff
太阳系是在本地星际云或本地绒毛(Local Fluff)中,并且在G云的附近,但不确定太阳系是否嵌入本地星际云,或是在本地星际云和G云相互作用的区域内。本地星际云是在较为疏松,称为本地泡内一个云气密度较高的区域。本地泡是星际物质中一个约300光年的沙漏型腔,其中充满了等离子体,表明它是最近的一些超新星爆炸产物。在距太阳10光年的范围内,恒星的数量相对较少。最接近的是三合星的南门二系统,距离太阳大约4.2光年。南门二A和B是一对像太阳的紧密相关恒星,而小的红矮星,比邻星在0.2光年的距离外环绕着这一对恒星。其它接近太阳的恒星依序是红矮星的巴纳德星(5.9光年)、沃夫359(7.8光年)、和拉兰德21185(8.3光年)。天狼星是邻近太阳最大的恒星,质量大约是太阳2倍的明亮主序星,距离太阳8.6光年。他有一颗伴星,天狼星B,是一颗白矮星。最靠近太阳的棕矮星是距离6.6光年的卢曼16联星系,在10光年内的还有红矮星的联星系鲁坦726-8,和单独的罗斯 154 (9.7光年)。最靠近太阳的类太阳恒星是距离11.9 年的鲸鱼座天仓五,质量大约是太阳的80%,但是光度只有60%。最近证实距离太阳15光年的红矮星格利泽674有系外行星,它有颗质量类似天王星但轨道周期仅有5天的行星。已知最靠近太阳的自由漂浮的行星质量天体是WISE 0855–0714,距离7光年远,质量小于10木星质量。对太阳系的长期研究,分化出了这样几门学科:虽然学者同意另外还有其他和太阳系相似的天体系统,但直到1992年才发现别的行星系。至今已发现几百个行星系,但是详细材料还是很少。这些行星系的发现是依靠多普勒效应,通过观测恒星光谱的周期性变化,分析恒星运动速度的变化情况,并据此推断是否有行星存在,并且可以计算行星的质量和轨道。应用这项技术只能发现木星级的大行星,像地球大小的行星就找不到了。此外,关于类似太阳系的天体系统的研究的另一个目的是探索其他星球上是否也存在着生命。相较于其它的行星系统,太阳系缺乏比水星轨道更内侧的行星 已知的太阳系也缺乏超级地球(第九行星可能是已知太阳系外的超级地球)。异于平常的是,太阳系只有小的岩石行星和大的气体行星;没有其它中间尺寸的行星典型 -既有岩石也有气体- 所以在地球和海王星(半径是地球的3.8倍)之间似乎没有空隙。此外,那些超级地球的轨道也都比水星更靠近母恒星。这导致假设所有的行星系统开始时都是很靠近的行星,然后经由一系列的碰撞造成行星质量的压实,导致形成几颗大的行星,但是在太阳系的碰撞造成它们的毁损和弹射。太阳系的行星轨道都接近圆形,与其它的系统相比,具有小的轨道离心率 。虽然试图部分以径向速度解释检测方法上的偏差 和数目相当高的部分以长期作用来解释,但确切原因仍未确定。这一节是太阳系天体的影像,图像调成相同的大小,不代表实际比例,另外选取了较好品质的影像,图像按照体积排序。有一些天体没有被放上,是因为其没有高品质的影像,像是阋神星。太阳系中包含众多固态表面,直径超过1公里的天体的总表面积达17亿平方公里。某些占星术士和神秘主义者认为太阳其实是一个双星系统的主星,在遥远的地方存在着一个伴星,名为“涅米西斯”(Nemesis,有译作复仇女神)。该假设是用作解释地球出现生物大灭绝的一些规则性,认为其伴星会摄动系内奥尔特云中的小行星和彗星,使其改变轨道冲进太阳系,增加撞击地球的机会并出现定期生物灭绝。
相关
- 古菌古菌(拉丁语:Archaea,来自古希腊语:ἀρχαῖα,意为“古代的东西”)又称古细菌、古生菌或太古生物、古核生物,是单细胞微生物,构成生物分类的一个域,或一个界。这些微生物1970年前
- 沿岸流沿岸流(英语:longshore current)是指波浪推向岸边,有时波峰列(波列)并不平行海岸线,两者形成的夹角,一波一波的波浪推动成一股贴岸而行的海流。近岸水流的流动方向与碎波区底床地形.
- 大规模监控2001年–2007年–与英国政府通信总部合作项目非持续进行项目美国的大规模监控可以追溯到第一次世界大战的战时监控与审查制度(英语:Censorship_in_the_United_States#Wartime_
- 吡喹酮吡喹酮(英语:Praziquantel,或英语:Biltricide)为一种用于人类及动物的驱虫药,专门治疗绦虫及吸虫。对于血吸虫、中华肝吸虫、广节裂头绦虫(英语:Diphyllobothrium latum)特别有效,吡喹
- 伯多禄·隆巴迪彼得伦巴都(英语:Peter Lombard,1100年-1160年),又称为伦巴第人彼得,著名中古时期神学家,经院哲学的代表人物之一,活跃于巴黎大学。是一位哲学家、神学家、于1159年被任命为巴黎主教
- 青蛙无尾目(学名:Anura)是两生纲的一个目,其下生物即蛙或蟾。该目的生物成体基本无尾,卵一般产于水中,孵化成蝌蚪,用鳃呼吸,经过变态,成体主要用肺呼吸,但多数皮肤也有部分呼吸功能。无尾
- 国家宗教国教或官方宗教、官方信仰,是指由国家确立的特定宗教。拥有国教的国家并非一定为神权国家,也不代表国教受到政府控制。国家或政府在当代社会中对公民施加国教影响的程度差别很
- 观音洞文化观音洞可以指供奉观音的寺庙(多位于洞窟内),还有以此为名的地名及设施:
- 彼得一世彼得一世·阿列克谢耶维奇·罗曼诺夫(俄语:Пётр Алексе́евич Рома́нов,1672年6月9日-1725年2月8日)为俄罗斯帝国罗曼诺夫王朝的沙皇(1682年—1725年),及俄罗
- 徐国良徐国良(1965年2月-),浙江诸暨人,分子遗传学家,九三学社社员。1985年毕业于杭州大学生物系,1988年取得中国科学院遗传研究所硕士学位,1993年取得德国马普分子遗传研究所与柏林工业大