哈尔小波

✍ dations ◷ 2025-08-24 14:10:49 #小波分析

哈尔小波转换是小波转换(Wavelet transform)中最简单的一种转换,也是最早提出的小波转换。
其对应的缩放方程式(scaling function)可表示为:

其滤波器(filter)h被定义为
h = : { 1 2 if n = 0,1 0 otherwise {\displaystyle {\begin{cases}{\frac {1}{\sqrt {2}}}&{\mbox{if n = 0,1}}\\0&{\mbox{otherwise}}\end{cases}}}
当 n = 0 与 n = 1 时,有两个非零系数,因此,我们可以将它写成

哈尔小波的母小波(mother wavelet)可表示为:

在所有正交性(orthonormal)小波转换中哈尔小波转换(Haar wavelet)是最简单的一种转换,但它并不适合用于较为平滑的函数,因为它只有一个消失矩(Vanishing Moment)。




由图示可知:

(1):

ψ ( t ) ψ ( 2 t ) d t = 0 {\displaystyle \Rightarrow \int \psi (t)\psi (2t)\,dt=0}

(2):

ψ ( t ) ψ ( t 1 ) d t = 0 {\displaystyle \Rightarrow \int \psi (t)\psi (t-1)\,dt=0}

scaling function




哈尔小波具有如下的特性:

(1)任何 function 都可以由 ϕ ( t ) , ϕ ( 2 t ) , ϕ ( 4 t ) , , ϕ ( 2 k t ) {\displaystyle \phi (t),\phi (2t),\phi (4t),\dots ,\phi (2^{k}t)} 以及它们的位移所组成。

(2)任何平均为 0 的function 都可以由 ψ ( t ) , ψ ( 2 t ) , ψ ( 4 t ) , , ψ ( 2 k t ) {\displaystyle \psi (t),\psi (2t),\psi (4t),\dots ,\psi (2^{k}t)} 所组成,也就是,任何 function 都可以由 常数, ψ ( t ) , ψ ( 2 t ) , ψ ( 4 t ) , , ψ ( 2 k t ) {\displaystyle \psi (t),\psi (2t),\psi (4t),\dots ,\psi (2^{k}t)} 所组成。

(3)正交性(Orthogonal) 2 m ψ ( 2 m 1 t n 1 ) ψ ( 2 m t n ) d t = δ ( m , m 1 ) δ ( n , n 1 ) {\displaystyle \int _{-\infty }^{\infty }2^{m}\psi (2^{m_{1}}t-n_{1})\psi (2^{m}t-n)\,dt=\delta (m,m_{1})\delta (n,n_{1})}

(4)不同宽度的(也就是不同 m) 的wavelet/scaling functions之间会有一个关系

                     ϕ        (        t        )        =        ϕ        (        2        t        )        +        ϕ        (        2        t                1        )              {\displaystyle \phi (t)=\phi (2t)+\phi (2t-1)}  

ϕ ( t n ) = ϕ ( 2 t 2 n ) + ϕ ( 2 t 2 n 1 ) {\displaystyle \phi (t-n)=\phi (2t-2n)+\phi (2t-2n-1)} ϕ ( 2 m t n ) = ϕ ( 2 m + 1 t 2 n ) + ϕ ( 2 m + 1 t 2 n 1 ) {\displaystyle \phi (2^{m}t-n)=\phi (2^{m+1}t-2n)+\phi (2^{m+1}t-2n-1)}

                     ψ        (        t        )        =        ϕ        (        2        t        )                ϕ        (        2        t                1        )              {\displaystyle \psi (t)=\phi (2t)-\phi (2t-1)}  

ψ ( t n ) = ϕ ( 2 t n ) ϕ ( 2 t 2 n 1 ) {\displaystyle \psi (t-n)=\phi (2t-n)-\phi (2t-2n-1)} ψ ( 2 m t n ) = ϕ ( 2 m + 1 t n ) ϕ ( 2 m + 1 t 2 n 1 ) {\displaystyle \psi (2^{m}t-n)=\phi (2^{m+1}t-n)-\phi (2^{m+1}t-2n-1)}

(5)可以用 m+1的 系数来计算 m 的系数

χ w ( n , m ) = 2 m / 2 x ( t ) ϕ ( 2 m t n ) d t {\displaystyle \chi _{w}(n,m)=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m}t-n)\,dt}

χ w ( n , m ) = 2 m / 2 x ( t ) ϕ ( 2 m + 1 t 2 n ) d t + = 2 m / 2 x ( t ) ϕ ( 2 m + 1 t 2 n 1 ) d t = 1 2 ( χ w ( 2 n , m + 1 ) + χ w ( 2 n + 1 , m + 1 ) ) {\displaystyle {\begin{aligned}\chi _{w}(n,m)&=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m+1}t-2n)\,dt+\\&=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m+1}t-2n-1)\,dt\\&={\sqrt {\frac {1}{2}}}(\chi _{w}(2n,m+1)+\chi _{w}(2n+1,m+1))\\\end{aligned}}}

X w ( n , m ) = 2 m / 2 x ( t ) ψ ( 2 m t n ) d t {\displaystyle \mathrm {X} _{w}(n,m)=2^{m/2}\int _{-\infty }^{\infty }x(t)\psi (2^{m}t-n)\,dt}

X w ( n , m ) = 2 m / 2 x ( t ) ϕ ( 2 m + 1 t 2 n ) d t = 2 m / 2 x ( t ) ϕ ( 2 m + 1 t 2 n 1 ) d t = X w ( n , m ) = 1 2 ( χ w ( 2 n , m + 1 ) χ w ( 2 n + 1 , m + 1 ) ) {\displaystyle {\begin{aligned}\mathrm {X} _{w}(n,m)&=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m+1}t-2n)\,dt-\\&=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m+1}t-2n-1)\,dt\\&=\mathrm {X} _{w}(n,m)={\sqrt {\frac {1}{2}}}(\chi _{w}(2n,m+1)-\chi _{w}(2n+1,m+1))\\\end{aligned}}}

图示如下:

为多重解析结构(multiresolution analysis )

相关

  • RBMK计划26台机组:压力管式石墨慢化沸水反应炉(RBMK,俄语:Реактор Большой Мощности Канальный,直译:大功率管式反应炉)是一种苏联建造的用于核电站的
  • 免疫能力抑制免疫抑制(英语:immunosuppression)是指对于免疫应答的抑制作用。免疫抑制可由天然或人为因素导致。天然免疫抑制包括天然免疫耐受,机体可能会对自身组织成分不产生免疫应答。人
  • 柑橘柑橘是芸香科柑橘属水果的统称。主要种类有橘、柑、甜橙、酸橙、柚、葡萄柚、柠檬、莱姆、枸橼、佛手柑和金橘等。柑橘类水果是世界上产量最大的水果,目前的年产量已经超过了
  • 甲状会厌肌甲状会厌肌(thyroepiglottic muscle)相当数量的甲杓肌的肌纤维被延长到杓状会厌襞;其中有些遗失,而其他的则继续延伸到会厌的边缘。甲状会厌肌有不同的英文名称:thyroepiglotticu
  • 有序对在数学中,有序对是两个对象的搜集,使得可以区分出其中一个是“第一个元素”而另一个是“第二个元素”(第一个元素和第二个元素也叫做左投影和右投影)。带有第一个元素a和第二个
  • 太阳黑子太阳黑子(亦称日斑)是太阳光球上的临时现象,它们在可见光下呈现比周围区域黑暗的斑点。它们是由高密度的磁性活动抑制了对流的激烈活动造成的,在表面形成温度降低的区域。虽然它
  • DNA解旋酶螺旋酶(英语:Helicases,又译解旋酶或解螺旋酶)是所有生物体维持生命所必需的一类酶,可分为多种类型。这类酵素是能够依循核酸磷酸双酯骨架(phosphodiester backbone)的方向性,而往特
  • 小行星55636小行星55636 2002 TX300(也可以写成(55636) 2002 TX300)是近地小行星追踪计划在2002年10月15日发现的一个大外海王星天体 (TNO)。2002 TX300是颗绝对星等介于创神星和伐罗那之
  • 高杉晋作高杉 晋作(1839年9月27日-1867年5月17日),讳春风,通称晋作,又名东一、和助,字畅夫,号东行。幕末长州藩士。以创设奇兵队而活跃于倒幕活动而知名。假名有谷 潜藏、谷 梅之助、备后屋
  • 大卫·尼文大卫·尼文(James David Graham Niven ,1910年3月1日 - 1983年7月29日),英国演员与作家,曾获得奥斯卡最佳男主角奖。在第二次世界大战期间拍摄了两部电影,并在铜头蛇行动中执行了