哈尔小波

✍ dations ◷ 2025-10-30 00:04:37 #小波分析

哈尔小波转换是小波转换(Wavelet transform)中最简单的一种转换,也是最早提出的小波转换。
其对应的缩放方程式(scaling function)可表示为:

其滤波器(filter)h被定义为
h = : { 1 2 if n = 0,1 0 otherwise {\displaystyle {\begin{cases}{\frac {1}{\sqrt {2}}}&{\mbox{if n = 0,1}}\\0&{\mbox{otherwise}}\end{cases}}}
当 n = 0 与 n = 1 时,有两个非零系数,因此,我们可以将它写成

哈尔小波的母小波(mother wavelet)可表示为:

在所有正交性(orthonormal)小波转换中哈尔小波转换(Haar wavelet)是最简单的一种转换,但它并不适合用于较为平滑的函数,因为它只有一个消失矩(Vanishing Moment)。




由图示可知:

(1):

ψ ( t ) ψ ( 2 t ) d t = 0 {\displaystyle \Rightarrow \int \psi (t)\psi (2t)\,dt=0}

(2):

ψ ( t ) ψ ( t 1 ) d t = 0 {\displaystyle \Rightarrow \int \psi (t)\psi (t-1)\,dt=0}

scaling function




哈尔小波具有如下的特性:

(1)任何 function 都可以由 ϕ ( t ) , ϕ ( 2 t ) , ϕ ( 4 t ) , , ϕ ( 2 k t ) {\displaystyle \phi (t),\phi (2t),\phi (4t),\dots ,\phi (2^{k}t)} 以及它们的位移所组成。

(2)任何平均为 0 的function 都可以由 ψ ( t ) , ψ ( 2 t ) , ψ ( 4 t ) , , ψ ( 2 k t ) {\displaystyle \psi (t),\psi (2t),\psi (4t),\dots ,\psi (2^{k}t)} 所组成,也就是,任何 function 都可以由 常数, ψ ( t ) , ψ ( 2 t ) , ψ ( 4 t ) , , ψ ( 2 k t ) {\displaystyle \psi (t),\psi (2t),\psi (4t),\dots ,\psi (2^{k}t)} 所组成。

(3)正交性(Orthogonal) 2 m ψ ( 2 m 1 t n 1 ) ψ ( 2 m t n ) d t = δ ( m , m 1 ) δ ( n , n 1 ) {\displaystyle \int _{-\infty }^{\infty }2^{m}\psi (2^{m_{1}}t-n_{1})\psi (2^{m}t-n)\,dt=\delta (m,m_{1})\delta (n,n_{1})}

(4)不同宽度的(也就是不同 m) 的wavelet/scaling functions之间会有一个关系

                     ϕ        (        t        )        =        ϕ        (        2        t        )        +        ϕ        (        2        t                1        )              {\displaystyle \phi (t)=\phi (2t)+\phi (2t-1)}  

ϕ ( t n ) = ϕ ( 2 t 2 n ) + ϕ ( 2 t 2 n 1 ) {\displaystyle \phi (t-n)=\phi (2t-2n)+\phi (2t-2n-1)} ϕ ( 2 m t n ) = ϕ ( 2 m + 1 t 2 n ) + ϕ ( 2 m + 1 t 2 n 1 ) {\displaystyle \phi (2^{m}t-n)=\phi (2^{m+1}t-2n)+\phi (2^{m+1}t-2n-1)}

                     ψ        (        t        )        =        ϕ        (        2        t        )                ϕ        (        2        t                1        )              {\displaystyle \psi (t)=\phi (2t)-\phi (2t-1)}  

ψ ( t n ) = ϕ ( 2 t n ) ϕ ( 2 t 2 n 1 ) {\displaystyle \psi (t-n)=\phi (2t-n)-\phi (2t-2n-1)} ψ ( 2 m t n ) = ϕ ( 2 m + 1 t n ) ϕ ( 2 m + 1 t 2 n 1 ) {\displaystyle \psi (2^{m}t-n)=\phi (2^{m+1}t-n)-\phi (2^{m+1}t-2n-1)}

(5)可以用 m+1的 系数来计算 m 的系数

χ w ( n , m ) = 2 m / 2 x ( t ) ϕ ( 2 m t n ) d t {\displaystyle \chi _{w}(n,m)=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m}t-n)\,dt}

χ w ( n , m ) = 2 m / 2 x ( t ) ϕ ( 2 m + 1 t 2 n ) d t + = 2 m / 2 x ( t ) ϕ ( 2 m + 1 t 2 n 1 ) d t = 1 2 ( χ w ( 2 n , m + 1 ) + χ w ( 2 n + 1 , m + 1 ) ) {\displaystyle {\begin{aligned}\chi _{w}(n,m)&=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m+1}t-2n)\,dt+\\&=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m+1}t-2n-1)\,dt\\&={\sqrt {\frac {1}{2}}}(\chi _{w}(2n,m+1)+\chi _{w}(2n+1,m+1))\\\end{aligned}}}

X w ( n , m ) = 2 m / 2 x ( t ) ψ ( 2 m t n ) d t {\displaystyle \mathrm {X} _{w}(n,m)=2^{m/2}\int _{-\infty }^{\infty }x(t)\psi (2^{m}t-n)\,dt}

X w ( n , m ) = 2 m / 2 x ( t ) ϕ ( 2 m + 1 t 2 n ) d t = 2 m / 2 x ( t ) ϕ ( 2 m + 1 t 2 n 1 ) d t = X w ( n , m ) = 1 2 ( χ w ( 2 n , m + 1 ) χ w ( 2 n + 1 , m + 1 ) ) {\displaystyle {\begin{aligned}\mathrm {X} _{w}(n,m)&=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m+1}t-2n)\,dt-\\&=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m+1}t-2n-1)\,dt\\&=\mathrm {X} _{w}(n,m)={\sqrt {\frac {1}{2}}}(\chi _{w}(2n,m+1)-\chi _{w}(2n+1,m+1))\\\end{aligned}}}

图示如下:

为多重解析结构(multiresolution analysis )

相关

  • 四环霉素四环霉素(英语:Tetracycline,/ˌtɛtrəˈsaɪkliːn/,INN),又称四环素,一种聚酮类广谱抗生素药物的泛称,这类药物由链霉菌属放线菌门细菌所产生,基本化学结构均由四个环接合而成,可用
  • 巴比伦囚徒巴比伦囚虏或巴比伦之囚是指古犹太人被掳往巴比伦的历史事件。公元前597年和前586年,犹大王国两度被新巴比伦王国国王尼布甲尼撒二世征服,大批犹太富人、工匠、祭司、王室成员
  • 朱特人朱特人(德语:Jüten;拉丁语:Iutae;丹麦语:Jyder)是日耳曼人的一个分支,被比德指为当时三个最强大的日耳曼民族之一。他们被认为是来自日德兰半岛(Iutum),即现今丹麦南石勒苏益格(南日德
  • 卡罗莱纳文加罗林语是一种南岛语言,起源于加罗林群岛,但主要为北马里亚纳群岛居民所使用。加罗林人将该语言与英语一起作为常用语言。世界上约有3,100名母语人士。
  • 非快速动眼睡眠非快速动眼睡眠(英语:non-rapid eye movements)是指没有快速动眼运动的睡眠。在这段睡眠期间,大脑的活动下降到最低,使得人体能够得到完全的舒缓。不同于快速动眼睡眠,在这段期间
  • 天师张天师,道教门派之一的“正一道”龙虎宗各代传人的称谓。“正一道”(即“天师道”)由张陵(张道陵)创立,后世称张陵为“(祖)天师”,其子张衡为“嗣师”,其孙张鲁为“系师”,曰“三师”(“
  • 南港台电仓库台电中心仓库,位于台北市南港区,靠近松山车站东侧,面积约3.6公顷,在日治时期为台湾电力株式会社松山工场,战后作为台湾电力公司的松山修理厂,即台电中心仓库。台电中心仓库北侧紧
  • 济州四·三事件济州四·三事件(韩语:제주 4·3 사건),济州岛在1948年4月3日——1954年9月21日持续六年半的军、警在镇压与围剿叛乱事件,是韩战之前朝鲜近代史上(含日本殖民时代)最血腥的事件,但长
  • 亚历珊卓皇后鸟翼蝶亚历珊卓皇后鸟翼蝶(学名:),又名亚历山大鸟翼蝶或亚历山大凤蝶,是世界上最大的蝴蝶。它们是由罗斯柴尔德(Walter Rothschild)于1907年所命名,是为纪念英王爱德华七世的妻子亚历珊卓
  • 莱蒂西亚·格里玛尔迪莱蒂西亚·格里玛尔迪,全名为莱蒂西亚·格里玛尔迪·斯皮策,为法国抒情女高音,毕业于纽约市的茱莉亚学院。出生于法国的莱蒂西亚·格里玛尔迪,童年期间分别在里斯本和伦敦成长。