哈尔小波

✍ dations ◷ 2024-12-23 06:21:31 #小波分析

哈尔小波转换是小波转换(Wavelet transform)中最简单的一种转换,也是最早提出的小波转换。
其对应的缩放方程式(scaling function)可表示为:

其滤波器(filter)h被定义为
h = : { 1 2 if n = 0,1 0 otherwise {\displaystyle {\begin{cases}{\frac {1}{\sqrt {2}}}&{\mbox{if n = 0,1}}\\0&{\mbox{otherwise}}\end{cases}}}
当 n = 0 与 n = 1 时,有两个非零系数,因此,我们可以将它写成

哈尔小波的母小波(mother wavelet)可表示为:

在所有正交性(orthonormal)小波转换中哈尔小波转换(Haar wavelet)是最简单的一种转换,但它并不适合用于较为平滑的函数,因为它只有一个消失矩(Vanishing Moment)。




由图示可知:

(1):

ψ ( t ) ψ ( 2 t ) d t = 0 {\displaystyle \Rightarrow \int \psi (t)\psi (2t)\,dt=0}

(2):

ψ ( t ) ψ ( t 1 ) d t = 0 {\displaystyle \Rightarrow \int \psi (t)\psi (t-1)\,dt=0}

scaling function




哈尔小波具有如下的特性:

(1)任何 function 都可以由 ϕ ( t ) , ϕ ( 2 t ) , ϕ ( 4 t ) , , ϕ ( 2 k t ) {\displaystyle \phi (t),\phi (2t),\phi (4t),\dots ,\phi (2^{k}t)} 以及它们的位移所组成。

(2)任何平均为 0 的function 都可以由 ψ ( t ) , ψ ( 2 t ) , ψ ( 4 t ) , , ψ ( 2 k t ) {\displaystyle \psi (t),\psi (2t),\psi (4t),\dots ,\psi (2^{k}t)} 所组成,也就是,任何 function 都可以由 常数, ψ ( t ) , ψ ( 2 t ) , ψ ( 4 t ) , , ψ ( 2 k t ) {\displaystyle \psi (t),\psi (2t),\psi (4t),\dots ,\psi (2^{k}t)} 所组成。

(3)正交性(Orthogonal) 2 m ψ ( 2 m 1 t n 1 ) ψ ( 2 m t n ) d t = δ ( m , m 1 ) δ ( n , n 1 ) {\displaystyle \int _{-\infty }^{\infty }2^{m}\psi (2^{m_{1}}t-n_{1})\psi (2^{m}t-n)\,dt=\delta (m,m_{1})\delta (n,n_{1})}

(4)不同宽度的(也就是不同 m) 的wavelet/scaling functions之间会有一个关系

                     ϕ        (        t        )        =        ϕ        (        2        t        )        +        ϕ        (        2        t                1        )              {\displaystyle \phi (t)=\phi (2t)+\phi (2t-1)}  

ϕ ( t n ) = ϕ ( 2 t 2 n ) + ϕ ( 2 t 2 n 1 ) {\displaystyle \phi (t-n)=\phi (2t-2n)+\phi (2t-2n-1)} ϕ ( 2 m t n ) = ϕ ( 2 m + 1 t 2 n ) + ϕ ( 2 m + 1 t 2 n 1 ) {\displaystyle \phi (2^{m}t-n)=\phi (2^{m+1}t-2n)+\phi (2^{m+1}t-2n-1)}

                     ψ        (        t        )        =        ϕ        (        2        t        )                ϕ        (        2        t                1        )              {\displaystyle \psi (t)=\phi (2t)-\phi (2t-1)}  

ψ ( t n ) = ϕ ( 2 t n ) ϕ ( 2 t 2 n 1 ) {\displaystyle \psi (t-n)=\phi (2t-n)-\phi (2t-2n-1)} ψ ( 2 m t n ) = ϕ ( 2 m + 1 t n ) ϕ ( 2 m + 1 t 2 n 1 ) {\displaystyle \psi (2^{m}t-n)=\phi (2^{m+1}t-n)-\phi (2^{m+1}t-2n-1)}

(5)可以用 m+1的 系数来计算 m 的系数

χ w ( n , m ) = 2 m / 2 x ( t ) ϕ ( 2 m t n ) d t {\displaystyle \chi _{w}(n,m)=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m}t-n)\,dt}

χ w ( n , m ) = 2 m / 2 x ( t ) ϕ ( 2 m + 1 t 2 n ) d t + = 2 m / 2 x ( t ) ϕ ( 2 m + 1 t 2 n 1 ) d t = 1 2 ( χ w ( 2 n , m + 1 ) + χ w ( 2 n + 1 , m + 1 ) ) {\displaystyle {\begin{aligned}\chi _{w}(n,m)&=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m+1}t-2n)\,dt+\\&=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m+1}t-2n-1)\,dt\\&={\sqrt {\frac {1}{2}}}(\chi _{w}(2n,m+1)+\chi _{w}(2n+1,m+1))\\\end{aligned}}}

X w ( n , m ) = 2 m / 2 x ( t ) ψ ( 2 m t n ) d t {\displaystyle \mathrm {X} _{w}(n,m)=2^{m/2}\int _{-\infty }^{\infty }x(t)\psi (2^{m}t-n)\,dt}

X w ( n , m ) = 2 m / 2 x ( t ) ϕ ( 2 m + 1 t 2 n ) d t = 2 m / 2 x ( t ) ϕ ( 2 m + 1 t 2 n 1 ) d t = X w ( n , m ) = 1 2 ( χ w ( 2 n , m + 1 ) χ w ( 2 n + 1 , m + 1 ) ) {\displaystyle {\begin{aligned}\mathrm {X} _{w}(n,m)&=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m+1}t-2n)\,dt-\\&=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m+1}t-2n-1)\,dt\\&=\mathrm {X} _{w}(n,m)={\sqrt {\frac {1}{2}}}(\chi _{w}(2n,m+1)-\chi _{w}(2n+1,m+1))\\\end{aligned}}}

图示如下:

为多重解析结构(multiresolution analysis )

相关

  • 被动吸烟二手烟,亦称非自愿性吸烟,是指在吸取燃点烟草时随着烟雾释放出来的物质,是一种被动吸烟(Passive smoking)方式有研究指二手烟有焦油、阿摩尼亚、尼古丁、悬浮微粒、超细悬浮微粒
  • 胃肠学胃肠学(英语:Gastroenterology,又称为肠胃病学)是医学的一个分枝,专门研究消化系统(从口腔到肛门的消化道)及相关疾病。
  • 蛙壶菌蛙壶菌(学名:Batrachochytrium dendrobatidis)是一种壶菌门真菌,可以引起两栖类的壶菌病。它们最初是于1998年发现,在其后的十年内,造成了大量两栖类的死亡,引发多个物种灭绝,是为全
  • 罗马-菲乌米奇诺机场罗马-菲乌米奇诺“列奥那多·达芬奇”国际机场(意大利语:Aeroporto internazionale di Roma-Fiumicino "Leonardo da Vinci",IATA代码:FCO;ICAO代码:LIRF),是一座位于意大利拉齐奥大
  • 氯酸盐氯酸盐是氯酸所成的盐类,含有三角锥型的氯酸根离子—ClO3−,其中氯原子的氧化态为+5。氯酸盐有强氧化性,储存时应避免接触有机材料及还原性的物质。氯酸盐曾用作烟火中的氧化剂
  • 痄腮腮腺炎(Parotitis),俗语称猪头皮,是指一个或两个腮腺(人类脸颊两旁的主要唾腺)发炎的疾病。腮腺是唾腺中最经常发炎的一个部位。目前已知最常造成细菌性腮腺炎的是金黄色葡萄球菌(S
  • 卡尔·希欧多尔·德莱叶卡尔·西奥多·德莱叶(Carl Theodor Dreyer,1889年2月3日-1968年3月20日)是一位丹麦电影导演,被认为是历史上最伟大的导演之一。
  • 罗伯·波特曼罗伯特·琼斯·“罗布”·波特曼(英语:Robert Jones "Rob" Portman,1955年12月19日-),是一位美国律师和俄亥俄州资浅共和党参议员,于2010年接替退休的参议员乔治·沃伊诺维奇。波特
  • 恒星天文学天文学是一门自然科学,它运用数学、物理和化学等方法来解释宇宙间的天体,包括行星、卫星、彗星、恒星、星系等等,以及各种现象,如超新星爆炸、伽马射线暴、宇宙微波背景辐射等等
  • 布莱兹·帕斯卡布莱兹‧帕斯卡(Blaise Pascal,1623年6月19日-1662年8月19日),法国神学家、哲学家、数学家、物理学家、化学家、音乐家、教育家、气象学家。帕斯卡早期进行自然和应用科学的研究,