首页 >
角速率
✍ dations ◷ 2025-08-05 23:13:10 #角速率
角速度(Angular velocity)是在物理学中定义为角位移的变化率,描述物体转动时,在单位时间内转过多少角度以及转动方向的向量,(更准确地说,是赝向量),通常用希腊字母
Ω
{displaystyle Omega }
或
ω
{displaystyle omega }
来表示。在国际单位制中,单位是弧度每秒(rad/s)。在日常生活,通常量度单位时间内的转动周数,即是每分钟转速(rpm),电脑硬盘和汽车引擎转数就是以rpm来量度,物理学则以rev/min表示每分钟转动周数。角速度的方向垂直于转动平面,可通过右手定则来确定,物体以逆时针方向转动其角速度为正值,物体以顺时针方向转动其角速度为负值。角速度量值的大小称作角速率,通常也是用ω来表示。一个质点在二维平面上的角速度是最基本的。如右图所示,假使从
O
{displaystyle O}
点向(
P
{displaystyle P}
)质点画一条直线,则该粒子的速度向量(
v
{displaystyle mathbf {v} }
)可分成在沿着径向上分量(
v
∥
{displaystyle mathrm {v} _{parallel }}
, - 径向分量)以及垂直于径向的分量(
v
⊥
{displaystyle mathrm {v} _{perp }}
- 切线方向分量)。由于粒子在径向上的运动并不会造成相对于原点(
O
{displaystyle O}
)的转动,在求取该粒子的角速度时,可以忽略水平(径向)分量。因此,转动完全是由切线方向的运动所造成的(如同质点在绕着等速率圆周运动),即角速度是完全由垂直(切线方向)的分量所决定的。
质点角度位置的改变率与其切线方向速度的关系式如下:定义角速度为
ω
=
d
φ
d
t
{displaystyle omega ={frac {dvarphi }{dt}}}
(其中
φ
{displaystyle varphi }
是弧度,即弧长除以半径),而速度的垂直分量
v
⊥
{displaystyle mathrm {v} _{perp }}
等于
|
v
|
sin
(
θ
)
{displaystyle |mathrm {mathbf {v} } |,sin(theta )}
;其中θ是向量
r
{displaystyle mathbf {r} }
与
v
{displaystyle mathbf {v} }
的夹角,则导出:在二维坐标系中,角速度是一个只有大小没有方向的赝标量,而非标量。标量与赝标量不同的地方在于,当x 轴与y 轴对调时,标量不会因此而改变正负符号,然而赝标量却会因此而改变。角度及角速度则是赝标量。以一般的定义,从x 轴转向y 轴的方向为转动的正方向。倘若座标轴对调,而物体转动不变,则角度的正负符号将会改变,因此角速度的正负号也跟着改变。注意:角速度的正负号及数值量取决于原点位置及座标轴方向的选定。在三维坐标系中,角速度变得比较复杂。在此状况下,角速度通常被当作向量来看待;甚至更精确一点要当作伪向量。它不只具有数值,而且同时具有方向的特性。数值指的是单位时间内的角度变化率,而方向则是用来描述转动轴的。概念上,可以利用右手定则来标示角速度伪向量的正方向。原则如下:正如同在二维座标系的例子中,一个质点的移动速度相对于原点可以分成一个沿着径向以及另一个垂直径向的分量。举例而言,原点与质点的速度垂直分量的组合可以定义一个转动平面,质点在此平面上的行为就如同在二维坐标系中的状况下,其转动轴则是一条通过原点且垂直此平面的线,这个轴订定了角速度伪向量的方向,而角速度的数值则是如同在二维座标系状况下求得的伪标量的值。当定义一个指向角速度伪向量方向单位向量
n
^
{displaystyle {hat {n}}}
时,可以用类似二维坐标系的方式来表示角速度:再加上外积的定义,则可以写成:一般而言,在高维空间的角速度是一个二阶斜对称的角位移张量对时间的微分。此张量具有
n
(
n
−
1
)
2
{displaystyle {frac {n(n-1)}{2}}}
个独立分量,其中"
n
(
n
−
1
)
2
{displaystyle {frac {n(n-1)}{2}}}
"这个数字指的是在n-维内积空间中转动李群之李代数的维度。为了处理刚体运动的问题,最好采用固定在刚体上的座标系统,然后再学习此座标系统与实验室座标系统之间的座标转换。如右图所示,
O
{displaystyle O}
为实验室座标系统的原点,而
O
′
{displaystyle O'}
是刚体座标系统的原点,
O
{displaystyle O}
与
O
′
{displaystyle O'}
之间的向量
R
{displaystyle mathbf {R} }
。质点(
i
{displaystyle i}
)在刚体上
P
{displaystyle P}
点的位置上,此质点在实验室座标中的向量位置是
R
i
{displaystyle mathbf {R} _{i}}
,而在刚体座标中的向量位置为
r
i
{displaystyle mathbf {r} _{i}}
。我们可以看到此质点的位置可以写成:刚体最重要的特征为任意两点之间距离不随时间变化。这意味着矢量
r
i
{displaystyle mathbf {r} _{i}}
的长度是不变的。根据欧拉刚体的有限旋转定理,我们可以用
R
r
i
o
{displaystyle {mathcal {R}}mathbf {r} _{io}}
来代替
r
i
{displaystyle mathbf {r} _{i}}
,其中
R
{displaystyle {mathcal {R}}}
代表旋转矩阵,而
r
i
o
{displaystyle mathbf {r} _{io}}
是初始时刻的质点的位置。这个替代显得非常有意义,随时间变化的只有
R
{displaystyle {mathcal {R}}}
,而不是相对矢量
r
i
o
{displaystyle mathbf {r} _{io}}
。对于刚体就
O
′
{displaystyle O'}
旋转,质点的位置可以写为:就质点的速度对时间微分,可以得到质点的速度:其中
V
i
{displaystyle mathbf {V} _{i}}
是质点在实验室座标中的速度,而
V
{displaystyle mathbf {V} }
是
O
′
{displaystyle O'}
点(刚体座标的原点)的在实验室座标中的速度,故质点的速度可以写成:Ω
{displaystyle Omega }
是角速度张量,如果我们取角速度张量的对偶,我们即可得到角速度的伪矢量。而矩阵的乘法可以用外积来取代,导出:由此可见,刚体中质点的速度可分解成两项—刚体中某固定参考点的速度再加上一项包含该质点相对于此参考点的角速度的外积。相较于
O
′
{displaystyle O'}
点对于
O
{displaystyle O}
点的角速度,这个角速度是“自旋”角速度。很重要的是,每个在刚体中的质点具有相同的自旋角速度,此自旋角速度与刚体上或是实验室座标系统的原点的选择无关。换句话说,这是一个刚体特质所具有的真实物理量,与座标系统的选择无关。然而刚体上的参考点相对于实验室座标原点的角速度则和座标系统的选择有关,为了方便起见,通常选择该刚体的质心当作刚体座标系统的原点,这将大大地简化以数学形式在刚体角动量的上的表达。
相关
- 唐家乡唐家乡可以指:
- 底比斯圣队底比斯圣队(古希腊语 Ιερός Λόχος , hieròs lókhos)是古希腊城邦底比斯的一支精锐部队,共300人,由150对“古希腊少年爱”伴侣组成。这支部队是前4世纪底比斯军队的精
- 电动机械电动机械学(Electromechanics)是指从电气工程和机械工程中,结合电气和机械的过程和程序。电气工程在这方面也包括电子工程。继电器起源于电报,是用来再生电报信号的电动机械装置
- 木糖代谢D-木糖是一种五碳的醛糖(戊糖、单糖),可被多种微生物催化代谢为有用的产物。已知至少有四种木糖代谢的途径:1,氧化还原途径,存在于真核微生物中;2,异构酶途径,存在于某些原核生物中;3,W
- 颠茄颠茄(学名:Atropa belladonna)是一种茄科草本植物。原产于西欧的多年生草本植物,后来移植到北非、西亚、北美等地,中国也有引进栽培。原产地为山地背阴潮湿地带,在富含石灰质的土
- 大碰撞说大碰撞说(英语:Giant impact hypothesis),是一种解释月球形成原因及过程的假说,也可用于探讨金星及火星等类地行星的卫星生成。该假说认为在大约45亿年前(或太阳系形成后约2,000万
- Hsub4/subXeOsub6/sub高氙酸(化学式: H 4 X
- 巴氏消毒法巴氏消毒法(法语:Pasteurisation),法国生物学家路易·巴斯德于1864年发明的消毒方法,原理是用60~90°C的短暂加热,来杀死液体中的微生物,以达到保质的效果;确切温度和时间依照液体的
- 乔治·海尔乔治·埃勒里·海尔(英语:George Ellery Hale,1868年6月29日-1938年2月21日),美国天文学家。1868年出生于美国芝加哥,父亲是制造电梯的实业家。他曾于麻省理工学院、哈佛大学天文台
- 萤石这是一个2006年的各国萤石产量列表,主要基于2008年7月 英国地质调查局 的数据。