首页 >
角速率
✍ dations ◷ 2024-11-06 00:33:26 #角速率
角速度(Angular velocity)是在物理学中定义为角位移的变化率,描述物体转动时,在单位时间内转过多少角度以及转动方向的向量,(更准确地说,是赝向量),通常用希腊字母
Ω
{displaystyle Omega }
或
ω
{displaystyle omega }
来表示。在国际单位制中,单位是弧度每秒(rad/s)。在日常生活,通常量度单位时间内的转动周数,即是每分钟转速(rpm),电脑硬盘和汽车引擎转数就是以rpm来量度,物理学则以rev/min表示每分钟转动周数。角速度的方向垂直于转动平面,可通过右手定则来确定,物体以逆时针方向转动其角速度为正值,物体以顺时针方向转动其角速度为负值。角速度量值的大小称作角速率,通常也是用ω来表示。一个质点在二维平面上的角速度是最基本的。如右图所示,假使从
O
{displaystyle O}
点向(
P
{displaystyle P}
)质点画一条直线,则该粒子的速度向量(
v
{displaystyle mathbf {v} }
)可分成在沿着径向上分量(
v
∥
{displaystyle mathrm {v} _{parallel }}
, - 径向分量)以及垂直于径向的分量(
v
⊥
{displaystyle mathrm {v} _{perp }}
- 切线方向分量)。由于粒子在径向上的运动并不会造成相对于原点(
O
{displaystyle O}
)的转动,在求取该粒子的角速度时,可以忽略水平(径向)分量。因此,转动完全是由切线方向的运动所造成的(如同质点在绕着等速率圆周运动),即角速度是完全由垂直(切线方向)的分量所决定的。
质点角度位置的改变率与其切线方向速度的关系式如下:定义角速度为
ω
=
d
φ
d
t
{displaystyle omega ={frac {dvarphi }{dt}}}
(其中
φ
{displaystyle varphi }
是弧度,即弧长除以半径),而速度的垂直分量
v
⊥
{displaystyle mathrm {v} _{perp }}
等于
|
v
|
sin
(
θ
)
{displaystyle |mathrm {mathbf {v} } |,sin(theta )}
;其中θ是向量
r
{displaystyle mathbf {r} }
与
v
{displaystyle mathbf {v} }
的夹角,则导出:在二维坐标系中,角速度是一个只有大小没有方向的赝标量,而非标量。标量与赝标量不同的地方在于,当x 轴与y 轴对调时,标量不会因此而改变正负符号,然而赝标量却会因此而改变。角度及角速度则是赝标量。以一般的定义,从x 轴转向y 轴的方向为转动的正方向。倘若座标轴对调,而物体转动不变,则角度的正负符号将会改变,因此角速度的正负号也跟着改变。注意:角速度的正负号及数值量取决于原点位置及座标轴方向的选定。在三维坐标系中,角速度变得比较复杂。在此状况下,角速度通常被当作向量来看待;甚至更精确一点要当作伪向量。它不只具有数值,而且同时具有方向的特性。数值指的是单位时间内的角度变化率,而方向则是用来描述转动轴的。概念上,可以利用右手定则来标示角速度伪向量的正方向。原则如下:正如同在二维座标系的例子中,一个质点的移动速度相对于原点可以分成一个沿着径向以及另一个垂直径向的分量。举例而言,原点与质点的速度垂直分量的组合可以定义一个转动平面,质点在此平面上的行为就如同在二维坐标系中的状况下,其转动轴则是一条通过原点且垂直此平面的线,这个轴订定了角速度伪向量的方向,而角速度的数值则是如同在二维座标系状况下求得的伪标量的值。当定义一个指向角速度伪向量方向单位向量
n
^
{displaystyle {hat {n}}}
时,可以用类似二维坐标系的方式来表示角速度:再加上外积的定义,则可以写成:一般而言,在高维空间的角速度是一个二阶斜对称的角位移张量对时间的微分。此张量具有
n
(
n
−
1
)
2
{displaystyle {frac {n(n-1)}{2}}}
个独立分量,其中"
n
(
n
−
1
)
2
{displaystyle {frac {n(n-1)}{2}}}
"这个数字指的是在n-维内积空间中转动李群之李代数的维度。为了处理刚体运动的问题,最好采用固定在刚体上的座标系统,然后再学习此座标系统与实验室座标系统之间的座标转换。如右图所示,
O
{displaystyle O}
为实验室座标系统的原点,而
O
′
{displaystyle O'}
是刚体座标系统的原点,
O
{displaystyle O}
与
O
′
{displaystyle O'}
之间的向量
R
{displaystyle mathbf {R} }
。质点(
i
{displaystyle i}
)在刚体上
P
{displaystyle P}
点的位置上,此质点在实验室座标中的向量位置是
R
i
{displaystyle mathbf {R} _{i}}
,而在刚体座标中的向量位置为
r
i
{displaystyle mathbf {r} _{i}}
。我们可以看到此质点的位置可以写成:刚体最重要的特征为任意两点之间距离不随时间变化。这意味着矢量
r
i
{displaystyle mathbf {r} _{i}}
的长度是不变的。根据欧拉刚体的有限旋转定理,我们可以用
R
r
i
o
{displaystyle {mathcal {R}}mathbf {r} _{io}}
来代替
r
i
{displaystyle mathbf {r} _{i}}
,其中
R
{displaystyle {mathcal {R}}}
代表旋转矩阵,而
r
i
o
{displaystyle mathbf {r} _{io}}
是初始时刻的质点的位置。这个替代显得非常有意义,随时间变化的只有
R
{displaystyle {mathcal {R}}}
,而不是相对矢量
r
i
o
{displaystyle mathbf {r} _{io}}
。对于刚体就
O
′
{displaystyle O'}
旋转,质点的位置可以写为:就质点的速度对时间微分,可以得到质点的速度:其中
V
i
{displaystyle mathbf {V} _{i}}
是质点在实验室座标中的速度,而
V
{displaystyle mathbf {V} }
是
O
′
{displaystyle O'}
点(刚体座标的原点)的在实验室座标中的速度,故质点的速度可以写成:Ω
{displaystyle Omega }
是角速度张量,如果我们取角速度张量的对偶,我们即可得到角速度的伪矢量。而矩阵的乘法可以用外积来取代,导出:由此可见,刚体中质点的速度可分解成两项—刚体中某固定参考点的速度再加上一项包含该质点相对于此参考点的角速度的外积。相较于
O
′
{displaystyle O'}
点对于
O
{displaystyle O}
点的角速度,这个角速度是“自旋”角速度。很重要的是,每个在刚体中的质点具有相同的自旋角速度,此自旋角速度与刚体上或是实验室座标系统的原点的选择无关。换句话说,这是一个刚体特质所具有的真实物理量,与座标系统的选择无关。然而刚体上的参考点相对于实验室座标原点的角速度则和座标系统的选择有关,为了方便起见,通常选择该刚体的质心当作刚体座标系统的原点,这将大大地简化以数学形式在刚体角动量的上的表达。
相关
- 叶尼塞语系叶尼塞语系(Yeniseic 或 Yenisei-Ostyak)是分布在西伯利亚中部叶尼塞河流域的一个语族。包括7种语言:其中的Yug、Pumpokol、Arin和Assan早在18世纪消亡了,我们对这些语言所知甚
- 异性恋异性恋亦称为异性向,一般指对异性(包括生理性别及性别认同为当事人的异性)能产生爱慕感、建立浪漫关系,或认为异性拥有性吸引力的一种现象。把异性恋视作性倾向时,其定义则为“一
- 考选部考选部为中华民国考试院的机构之一,负责全国考选行政事宜。主要业务为“公务人员考试”及“专门职业及技术人员考试”。
- 质子发射质子发射(也称为质子放射性)是一种放射性衰变类型,其中一个质子被从原子核中发射。质子发射可以发生在一个原子核从高激发态之后的一个β衰变,在这种情况下,该过程被称为β-延迟
- 行政上划分意大利政区根据1948年宪法规定获得了一定程度的地区自治权,这条宪法条文是:为承认、保护并促进地方自治,保证在国家水平的服务尽可能分散管理,以适应自治和分权法律和法规的建立
- 核酸增幅试验聚合酶链式反应(英文:Polymerase chain reaction,缩写:PCR,又称多聚酶链式反应),是一项利用DNA双链复制的原理,在生物体外复制特定DNA片段的核酸合成技术。通过这一技术,可在短时间内
- 海带目见内文海带目是褐藻纲之下一个目级的海藻分类单元,现时包括有约30个属。 这些海带生长于浅海海洋底下的海藻林:一种类似于陆地上森林的海洋植物群落,估计从中新世(即500到2300万
- 气炸锅气炸锅(英语:Air fryer)为一种电子炊具,是对流恒温烤箱(英语:Convection oven)的缩小版。原始专利由Turbochef Technologies于2005年申请,主要针对大型连锁酒店和饮食店。2010年,飞利
- 沙棘沙棘(学名:Hippophae rhamnoides),或作海沙棘,是沙棘属的一种带有棘刺的落叶灌木,原产于亚洲和欧洲的温带、寒温带地区。沙棘可防风固沙,其果实可以食用或用来制作饮料,此外沙棘果在
- 拌拌,粤语称捞(音:lou1),是一种准备食物的方法,做法是把酱料与其他食物材料拌匀。拌这种方法常用于淀粉质食物身上,例如面、檬粉、饭等,亦有用于凉菜和非熟食如沙拉、凉拌、鱼生等。