五维空间

✍ dations ◷ 2025-05-16 14:02:50 #维度,五

五维空间是一个包含五个维度的空间。以物理学的角度来说,五维空间的维度比日常生活中所提到的三维空间以及相对论中的四维时空还要多。 五维空间是一种经常在数学中出现的抽象概念。在物理学和数学中,数字的序列可以理解为表示维欧几里得空间中的位置。宇宙的维度是否为五维同时也是个辩论的话题。

许多在早期对于五维空间的研究是在努力找出一个可以统一四种自然中的基本相互作用(强与弱的核力量,引力相互作用以及电磁相互作用)的理论。德国数学家西奥多·卡鲁扎 以及 瑞典物理学家奥斯卡·克莱因 在1921年独立的发展出 卡鲁扎-克莱因理论 ,在理论中使用了五维空间来统一 重力以及电磁力。 虽然后来发现这些方法有少部分不准确,但这一概念为过去一个世纪的进一步研究奠定了基础。

为了解释为什么这个维度不能被直接观察到,克莱茵提议五维空间可能是一个被卷成一个微小、紧致的循环空间,大约为10-33公分。 根据他的推理,他设想光是由于在更高维度上的波纹引起的干扰,超出人类的感知,类似于池塘中的鱼只能看到由雨滴引起的水面上的波纹的阴影。 虽然无法观测,但这会间接暗示看似无关的力量之间的联系。卡卢萨 - 克莱因理论在20世纪70年代经历了复兴,因为超弦理论和超重力的出现:现实是由能量线种动组成的概念,一个只有数学上可行的十个维度或更多的假设。 超弦理论接着演变成一种更通用的方法,称为M理论。M理论提议了一个除了十个基本维度之外的一个潜在的可观察的额外维度,同时也将允许超弦的存在。 其他的十个维度将会是紧致的, 或是 "卷曲" 成一个次原子的大小。 卡鲁扎-克莱因理论的本质在现今被视为规范为圆群的规范场论。

第五个维度很难直接观察到,然而大型强子对撞机提供了记录其存在的间接证据的机会。 物理学家推测,由于碰撞的结果,亚原子粒子的碰撞又产生新的粒子,包括从第四维逸出的引力,或膜 (物理学),泄漏成五维体。 M理论将解释重力相对于自然的其他基本力量的弱点,可以被观测, 例如,当使用磁体将一根针从桌上吸起来时 - 磁体能够容易地克服整个地球的重力拉力。

数学方法是在20世纪初开发的,把第五维视为一个理论结构。这些理论参考了希尔伯特空间,这概念假定了无穷的数学维度以允许无限数量的量子态。爱因斯坦、彼得˙伯格曼(英语:Peter Bergmann)以及华伦泰·伯格曼后来试图将广义相对论的四维时空延伸到一个额外的物理尺度,用来纳入电磁学,然而未获得成功。 在他们1938年的论文中,爱因斯坦和伯格曼是最先提出四维理论这一现代观点的人,其与爱因斯坦 - 麦克斯韦理论在长距离的情形一致,是由五维完全对称的五维理论推导出来的。 他们认为电磁性是由在第五维中“极化”的重力场引起的。

爱因斯坦和伯格曼理论主要的新颖之处在于,该理论严肃地将第五维视为一个物理实体,而不只是将度量张量和电磁势结合起来的借口。但他们随后放弃这种看法,修改该理论以打破其五维对称性。正如爱德华·维腾所指出的那样,他们的理由是更对称版本的理论预言了一种新的长程场的存在,既无质量又是纯量,这就需要对爱因斯坦的广义相对论作出根本性的修改。闵考斯基时空和真空中的马克士威方程组可嵌入在五维黎曼曲率张量中。

在1993年,物理学家杰拉德·特·胡夫特提出了全像原理,解释了"关于额外维度的讯息作为一个少一个维度的时空下的曲率是可见的"。 例如,全像图是放置在二维表面上的三维图片,当观察者移动时赋予图像曲率。类似地,在广义相对论中,第四维表现为可观测的三维作为移动的无限小(测试)粒子的曲率路径。 'T Hooft推测第五个维度是真正的。

根据克莱茵的定义, "几何在其自身内的变换下,是对于时空不变性质的研究。"。 因此,第五维的几何学研究了这种时空的不变性,当我们在它内部移动时,用形式方程表示。

在五维或著是更高的维度中,只有三个正多胞形存在。 在五维空间中,它们分别是`:

一个第四种的多胞形,一个半超方形, 可以经由五维超正方体交错后得到,称为五维半超方形拥有一半的顶点(十六个),而超胞则是由正五胞体和正十六胞体所组成。

在五维空间中的超球体 (同时也被叫做 4-球 ,因为它的表面是四维的) 所有在其超球面上的点到超球体的中心点P的距离都相等。 其超表面封闭的状况下,超体积公式为:

相关

  • 纳洛酮纳洛酮(Naloxone),又常以商品名“Narcan”贩售。该药物可以缓解摄入过量鸦片类药物所造成的影响。纳洛酮可以与鸦片类药物混入同一药品中,以减少误用时中毒的风险。纳洛酮常被制
  • span style=color: white;选择性退出/span欧洲联盟中,选择退出权(opt-out)是指选择性地不加入或不执行某项欧盟法律或者条约的权利。欧盟法律在欧洲联盟成员国基本都是有效的,但偶尔成员国可以选择排除一些欧盟的法律和
  • 阿伏伽德罗数在物理学和化学中,阿伏伽德罗常数(符号: N A {\displaystyle N_{A}} 或
  • 黑箱黑箱,指一个只知道输入输出关系而不知道内部结构的系统或设备。与之相反的是白箱(英语:White box (software engineering))。例子有:在物理竞赛中有一类题目,给参赛者一个有若干接
  • 伊斯坦布尔国际书展伊斯坦布尔国际书展(土耳其语:İstanbul Kitap Fuarı)创办于1982年,是中东地区规模最大的专业书展之一。2018年11月10日开始举办的第37届伊斯坦布尔国际书展上,中国教育图书进出
  • 协商会议 (卡塔尔)协商会议(阿拉伯语:مجلس الشورى)是卡塔尔的国家咨询机构,实行一院制。协商会议由35名议员组成,全部由卡塔尔埃米尔任命,内阁大臣为该会议法定成员。协商会议的职能是协
  • 延斯·奥托·克拉格延斯·奥托·克拉格(丹麦文:Jens Otto Krag,国际音标:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","C
  • 奕詥锺端郡王奕詥(1844年3月14日-1868年12月17日),爱新觉罗氏,清朝道光帝第八子。咸丰帝即位封为锺郡王。奕詥生于道光二十四年(1844年)正月廿六,生母是琳妃乌雅氏,他是奕�的同母弟弟,光绪
  • 超瞎翻唱2之情歌宝典超瞎翻唱2之情歌宝典(英语:Super Lousy Cover Songs II Love song compilation)是网红团体这群人TGOP著名的企划超瞎翻唱系列的第2部,这次的主题着重于西洋情歌。
  • 古利普斯古利普斯(发音: /dʒˈlɪps/, 希腊语:Γύλιππος),公元前5世纪后期斯巴达将领。公元前414年他被派往援助遭雅典围困的叙拉古。公元前413年他催毁了雅典船队以及步军。公元