有噪信道编码定理

✍ dations ◷ 2025-01-31 10:28:41 #信息论,数学定理

在信息论里,有噪信道编码定理指出,尽管噪声会干扰通信信道,但还是有可能在信息传输速率小于信道容量的前提下,以任意低的错误概率传送数据信息。这个令人惊讶的结果,有时候被称为信息原理基本定理,也叫做香农-哈特利定理或香农定理,是由克劳德·艾尔伍德·香农于1948年首次提出。

通信信道的信道容量或香农限制是指在指定的噪音标准下,信道理论上的最大传输率。

根据香农1948年的陈述,本定理描述了在不同级别的噪音干扰和数据损坏情况下,错误监测和纠正可能达到的最高效率。定理没有指出构造错误监测的模型,只是告诉大家达到的最佳效果。香农定理可以广泛应用在通信和数据存储领域。本定理是现代信息论的基础理论。香农只是提出了证明的大概提纲。1954年,艾米尔·范斯坦第一个提出了严密的论证。

香农定理假设一个有噪音的信道,信道容量为,信息以速度传送,如果

那么就存在一种编码技术使接收端收到的错误达到任意小的数值。这意味着理论上,有可能无错误地传送信息直到达到速度限制。

反过来同样重要。如果

那么想达到任意小的错误率是不可能实现的。因此,在传送速度超过信道容量的时候,可靠传输信息是不能被保证的。定理并没有指出在什么特殊情况下速度和容量相等。

简单的流程如"重复发送数据3遍,用一个投票系统在数据不一样的时候选择3个里面相同的那两个的值"是低效的错误纠正的方式,不能保证数据块能完全没有错误地传送。先进一些的技术如里德-所罗门码编码技术和更现代一些的Turbo码、LDPC码等编码技术更逼近香农限制,但是计算复杂度很高。

定理(香农,1948年):

和信息论的其它主要结果一样,噪音信道编码定理包括一个可以实现的结果和相应的相反的结果。这两个组成部分中间有一个界线。在本案例中,可以通过有噪音的信道的可能速度的集合和相应边界显示出这是一个紧密边界。

下面的证明框架只是已有的许多种不同证明方法中的一种而已。

下面这个可实现性的证明是使用渐近等同分割特性(Asymptotic equipartition property(英语:Asymptotic equipartition property) - AEP)方法。另一种信息论常用证明方法是错误列举法(Error Exponent(英语:Error Exponent))。

两种证明方法都使用随机编码参数来构造信道。这样的目的是减少计算的复杂度,同时仍旧可以证明在速度低于信道容量的时候,存在误码率在可接受范围甚至是接近于理想的无失真的编码方式。

采用AEP相关的参数,一个指定的信道,长度为n的源字符串 X 1 n {\displaystyle X_{1}^{n}}

我们可以说两个序列 X 1 n {\displaystyle {X_{1}^{n}}} ,如果它们是基于上述定义的匹配序列集合。

步骤

这个流程产生的错误可以分成两个部分:

定义: E i = { ( X 1 n ( i ) , Y 1 n ) A ϵ ( n ) } , i = 1 , 2 , . . . , 2 n R {\displaystyle E_{i}=\{(X_{1}^{n}(i),Y_{1}^{n})\in A_{\epsilon }^{(n)}\},i=1,2,...,2^{nR}}

作为消息1发送出去,消息i作为匹配的消息接收到的结果。

我们可以发现如果信道 R < I ( X ; Y ) {\displaystyle R<I(X;Y)} ,n变为无穷大,错误的可能性将降为0。

最后,假设平均的编码方式是“好”的话,我们知道存在一个编码方式的效率比平均的值要好,因此可以满足我们在有噪音的信道低误码率的要求。

假设一种编码有 2 n R {\displaystyle 2^{nR}} 个编码词语。W假设为在这个集合上的一个索引。设 X n {\displaystyle X^{n}} Y n {\displaystyle Y^{n}} 分别为编码词和接收到的词。

这些步骤的结果是 P e ( n ) 1 1 n R C R {\displaystyle P_{e}^{(n)}\geq 1-{\frac {1}{nR}}-{\frac {C}{R}}} 。当块的长度变为无穷大,如果R比C大,我们得到 P e ( n ) {\displaystyle P_{e}^{(n)}} 不可能降到0。只有在R比C小的情况下,我们可以得到任意低的误码率。

强逆定理证明由Wolfowitz于1957年提出。,证明归结于证明如下不等式,

其中 A {\displaystyle A} 为有限的正常数。当 n {\displaystyle n} 变为无穷大的时候,弱逆定理证明错误的可能性不可能变成0,而强逆定理证明了错误以指数方式趋向于1。因此, C {\displaystyle C} 是可靠连接和不可靠连接的临界点。

我们假设信道是无记忆的,但是随着时间的变化,传输的可靠性是变化的。发送端和接收端一样工作正常。这样信道容量如下

针对每个不同的信道,计算出取得该信道容量似的分布,以求得上式中的最大值,这样 C = lim inf 1 n i = 1 n C i {\displaystyle C=\liminf {\frac {1}{n}}\sum _{i=1}^{n}C_{i}} ,信道i的容量为 C i {\displaystyle C_{i}}

证明方法和上面信道编码定理几乎一样。在指定的信道里面,每一个符号的选择是随机的,编码方式也是随机的,采用渐近等同分割特性(AEP)方法来定义变化的无记忆信道的参数集。

1 n i = 1 n C i {\displaystyle {\frac {1}{n}}\sum _{i=1}^{n}C_{i}} 不收敛时,下极限开始起作用。

相关

  • 非编码DNA非编码DNA(英语:Non-Coding DNA,或称“垃圾DNA”),是指不包含制造蛋白质的指令,或是只能制造出无翻译能力RNA的DNA序列。此类DNA在真核生物的基因组中占有大多数。有很长的一段时
  • 梅赛德斯-奔驰name = 'Transport', description = '交通', content = {{ type = 'text', text = [[]] }, { type = 'item', original = 'articulated bus', rule = 'zh-cn:铰接客车;zh-tw
  • 分期付款分期付款是指在一次交易行为分多次还清欠款。分期付款还可以指:分期付款分期付款可分为有息和无息两种。有息分期付款通常先偿还利息,再付清本金,通常付款总额远高于实际交易价
  • 入侵中立国芬兰苏联惨胜芬兰苏联冬季战争(芬兰语:Talvisota,瑞典语:Vinterkriget,俄语:Зимняя война)是苏联与芬兰于第二次世界大战初期爆发的战争,自1939年11月30日由苏联向芬兰发动进
  • 肯定性行动肯定性行动(英语:Affirmative action),又称为优惠性差别待遇、积极平权措施、平权法案、矫正歧视措施等,是指防止对肤色、种族、宗教、性别、国族出身等少数群体或弱势群体歧视的
  • 职场欺凌职场欺凌,又称职场暴力,泛指在工作场所里,个人或团体对于同事或是下属进行不合理的欺凌行为。包含言语、非言语、身体、心理上的虐待或羞辱。这种形式的攻击行为不同于在学校里
  • 瓦尔特·格罗皮乌斯Peter Behrens (1908–1910) 法古斯工厂 工艺联盟展览(英语:Werkbund Exhibition (1914)) 包豪斯 格罗皮厄斯屋(英语:Gropius House) 巴格达大学(英语:University of Baghdad) 约翰
  • 创新工场创新工场由李开复创办于2009年9月7日,是一所旨在帮助年轻人创业的天使投资公司。总部设在北京海淀区清华科技园,于2010年9月8日搬往中关村西区的第三极大厦。于2019年关闭美国
  • 于伯林根空难俄罗斯巴什克利安航空第2937次班机,是一架图-154型客机,原计划由俄罗斯首都莫斯科飞往西班牙的巴塞罗纳。DHL快递公司第611次航班,是一架波音757-23APF型货机,原航线是从巴林国
  • 基督教中的耶稣基督徒相信耶稣是弥赛亚(基督),并相信通过他的死和复活,人类可以与上帝和好,从而得到救恩和永生的承诺。这些教义强调,作为上帝悦纳的羔羊,耶稣选择在髑髅地的十字架上受难,以此作为