有噪信道编码定理

✍ dations ◷ 2025-11-28 09:42:06 #信息论,数学定理

在信息论里,有噪信道编码定理指出,尽管噪声会干扰通信信道,但还是有可能在信息传输速率小于信道容量的前提下,以任意低的错误概率传送数据信息。这个令人惊讶的结果,有时候被称为信息原理基本定理,也叫做香农-哈特利定理或香农定理,是由克劳德·艾尔伍德·香农于1948年首次提出。

通信信道的信道容量或香农限制是指在指定的噪音标准下,信道理论上的最大传输率。

根据香农1948年的陈述,本定理描述了在不同级别的噪音干扰和数据损坏情况下,错误监测和纠正可能达到的最高效率。定理没有指出构造错误监测的模型,只是告诉大家达到的最佳效果。香农定理可以广泛应用在通信和数据存储领域。本定理是现代信息论的基础理论。香农只是提出了证明的大概提纲。1954年,艾米尔·范斯坦第一个提出了严密的论证。

香农定理假设一个有噪音的信道,信道容量为,信息以速度传送,如果

那么就存在一种编码技术使接收端收到的错误达到任意小的数值。这意味着理论上,有可能无错误地传送信息直到达到速度限制。

反过来同样重要。如果

那么想达到任意小的错误率是不可能实现的。因此,在传送速度超过信道容量的时候,可靠传输信息是不能被保证的。定理并没有指出在什么特殊情况下速度和容量相等。

简单的流程如"重复发送数据3遍,用一个投票系统在数据不一样的时候选择3个里面相同的那两个的值"是低效的错误纠正的方式,不能保证数据块能完全没有错误地传送。先进一些的技术如里德-所罗门码编码技术和更现代一些的Turbo码、LDPC码等编码技术更逼近香农限制,但是计算复杂度很高。

定理(香农,1948年):

和信息论的其它主要结果一样,噪音信道编码定理包括一个可以实现的结果和相应的相反的结果。这两个组成部分中间有一个界线。在本案例中,可以通过有噪音的信道的可能速度的集合和相应边界显示出这是一个紧密边界。

下面的证明框架只是已有的许多种不同证明方法中的一种而已。

下面这个可实现性的证明是使用渐近等同分割特性(Asymptotic equipartition property(英语:Asymptotic equipartition property) - AEP)方法。另一种信息论常用证明方法是错误列举法(Error Exponent(英语:Error Exponent))。

两种证明方法都使用随机编码参数来构造信道。这样的目的是减少计算的复杂度,同时仍旧可以证明在速度低于信道容量的时候,存在误码率在可接受范围甚至是接近于理想的无失真的编码方式。

采用AEP相关的参数,一个指定的信道,长度为n的源字符串 X 1 n {\displaystyle X_{1}^{n}}

我们可以说两个序列 X 1 n {\displaystyle {X_{1}^{n}}} ,如果它们是基于上述定义的匹配序列集合。

步骤

这个流程产生的错误可以分成两个部分:

定义: E i = { ( X 1 n ( i ) , Y 1 n ) A ϵ ( n ) } , i = 1 , 2 , . . . , 2 n R {\displaystyle E_{i}=\{(X_{1}^{n}(i),Y_{1}^{n})\in A_{\epsilon }^{(n)}\},i=1,2,...,2^{nR}}

作为消息1发送出去,消息i作为匹配的消息接收到的结果。

我们可以发现如果信道 R < I ( X ; Y ) {\displaystyle R<I(X;Y)} ,n变为无穷大,错误的可能性将降为0。

最后,假设平均的编码方式是“好”的话,我们知道存在一个编码方式的效率比平均的值要好,因此可以满足我们在有噪音的信道低误码率的要求。

假设一种编码有 2 n R {\displaystyle 2^{nR}} 个编码词语。W假设为在这个集合上的一个索引。设 X n {\displaystyle X^{n}} Y n {\displaystyle Y^{n}} 分别为编码词和接收到的词。

这些步骤的结果是 P e ( n ) 1 1 n R C R {\displaystyle P_{e}^{(n)}\geq 1-{\frac {1}{nR}}-{\frac {C}{R}}} 。当块的长度变为无穷大,如果R比C大,我们得到 P e ( n ) {\displaystyle P_{e}^{(n)}} 不可能降到0。只有在R比C小的情况下,我们可以得到任意低的误码率。

强逆定理证明由Wolfowitz于1957年提出。,证明归结于证明如下不等式,

其中 A {\displaystyle A} 为有限的正常数。当 n {\displaystyle n} 变为无穷大的时候,弱逆定理证明错误的可能性不可能变成0,而强逆定理证明了错误以指数方式趋向于1。因此, C {\displaystyle C} 是可靠连接和不可靠连接的临界点。

我们假设信道是无记忆的,但是随着时间的变化,传输的可靠性是变化的。发送端和接收端一样工作正常。这样信道容量如下

针对每个不同的信道,计算出取得该信道容量似的分布,以求得上式中的最大值,这样 C = lim inf 1 n i = 1 n C i {\displaystyle C=\liminf {\frac {1}{n}}\sum _{i=1}^{n}C_{i}} ,信道i的容量为 C i {\displaystyle C_{i}}

证明方法和上面信道编码定理几乎一样。在指定的信道里面,每一个符号的选择是随机的,编码方式也是随机的,采用渐近等同分割特性(AEP)方法来定义变化的无记忆信道的参数集。

1 n i = 1 n C i {\displaystyle {\frac {1}{n}}\sum _{i=1}^{n}C_{i}} 不收敛时,下极限开始起作用。

相关

  • VisItVisIt是一个开源型交互式并行可视化与图形分析工具,用于查看科学数据。利用VisIt,可以可视化二维几何模型以及三维空间结构化和非结构化网格之中所定义的标量场和矢量场。在设
  • 进贡朝贡(拉丁语:tributum),又称进贡、上贡,是一方将财富以某种形式给予另一方,以表示顺从或结盟,尤其是君主国里臣民献上礼物给君主,或藩属国也会向宗主国献上礼物。这些礼物称为贡品。
  • 南方卫理公会大学南方卫理公会大学(英语:Southern Methodist University,简称:SMU)又作南美以美大学,是一所男女合校的私立教会大学,位于德克萨斯州大学公园市(达拉斯的内飞地)。1911年由监理会成立,SM
  • 动产动产为移动后仍不改变性质、损害经济效用及经济价值的物,于大多数国家与地区并未以法律条文清楚列举,多认为不动产及定着物以外之物即属动产,如英国、日本、台湾及中国等,而法国
  • 布鲁克林大桥布鲁克林大桥(英语:Brooklyn Bridge),原称为纽约与布鲁克林大桥(英语:New York and Brooklyn Bridge)或东河大桥(英语:East River Bridge),是美国最老的悬索桥之一,建于1883年,其1,825米(5
  • 弗朗西斯·蒲福海军少将(英语:Rear admiral)弗朗西斯·蒲福爵士(Rear Admiral Sir Francis Beaufort, KCB, FRS, FRGS, MRIA(英语:Royal Irish Academy),/ˈboʊfərt/,1774年5月27日-1857年12月17日
  • 玩命关头6《速度与激情6》(英语:Fast & Furious 6)是2013年美国犯罪动作片,由林诣彬执导,范·迪塞尔和保罗·沃克尔主演。此部为速度与激情系列的第六部作品,剧情设定依然于第三部(即速度与
  • 1979年维拉事件阴谋论船帆座事件,又称维拉事件或南大西洋闪光事件,指美国核爆炸探测卫星船帆座号(Vela)于1979年9月22日格林威治标准时间零时53分探测到南大西洋和印度洋交界处发生“双闪”的事件。
  • 英国脱离欧盟英国脱欧(英语:Brexit,即Britain和exit;也译作英国退欧)是指英国现时已采取的政治行动用以推动英国退出欧洲联盟,使英国不再受欧盟法律、欧洲单一市场及若干自由贸易协议约束,并可
  • 算法分析在计算机科学中,算法分析(英语:Analysis of algorithm)是分析执行一个给定算法需要消耗的计算资源数量(例如计算时间,存储器使用等)的过程。算法的效率或复杂度在理论上表示为一个