有噪信道编码定理

✍ dations ◷ 2025-09-04 23:31:29 #信息论,数学定理

在信息论里,有噪信道编码定理指出,尽管噪声会干扰通信信道,但还是有可能在信息传输速率小于信道容量的前提下,以任意低的错误概率传送数据信息。这个令人惊讶的结果,有时候被称为信息原理基本定理,也叫做香农-哈特利定理或香农定理,是由克劳德·艾尔伍德·香农于1948年首次提出。

通信信道的信道容量或香农限制是指在指定的噪音标准下,信道理论上的最大传输率。

根据香农1948年的陈述,本定理描述了在不同级别的噪音干扰和数据损坏情况下,错误监测和纠正可能达到的最高效率。定理没有指出构造错误监测的模型,只是告诉大家达到的最佳效果。香农定理可以广泛应用在通信和数据存储领域。本定理是现代信息论的基础理论。香农只是提出了证明的大概提纲。1954年,艾米尔·范斯坦第一个提出了严密的论证。

香农定理假设一个有噪音的信道,信道容量为,信息以速度传送,如果

那么就存在一种编码技术使接收端收到的错误达到任意小的数值。这意味着理论上,有可能无错误地传送信息直到达到速度限制。

反过来同样重要。如果

那么想达到任意小的错误率是不可能实现的。因此,在传送速度超过信道容量的时候,可靠传输信息是不能被保证的。定理并没有指出在什么特殊情况下速度和容量相等。

简单的流程如"重复发送数据3遍,用一个投票系统在数据不一样的时候选择3个里面相同的那两个的值"是低效的错误纠正的方式,不能保证数据块能完全没有错误地传送。先进一些的技术如里德-所罗门码编码技术和更现代一些的Turbo码、LDPC码等编码技术更逼近香农限制,但是计算复杂度很高。

定理(香农,1948年):

和信息论的其它主要结果一样,噪音信道编码定理包括一个可以实现的结果和相应的相反的结果。这两个组成部分中间有一个界线。在本案例中,可以通过有噪音的信道的可能速度的集合和相应边界显示出这是一个紧密边界。

下面的证明框架只是已有的许多种不同证明方法中的一种而已。

下面这个可实现性的证明是使用渐近等同分割特性(Asymptotic equipartition property(英语:Asymptotic equipartition property) - AEP)方法。另一种信息论常用证明方法是错误列举法(Error Exponent(英语:Error Exponent))。

两种证明方法都使用随机编码参数来构造信道。这样的目的是减少计算的复杂度,同时仍旧可以证明在速度低于信道容量的时候,存在误码率在可接受范围甚至是接近于理想的无失真的编码方式。

采用AEP相关的参数,一个指定的信道,长度为n的源字符串 X 1 n {\displaystyle X_{1}^{n}}

我们可以说两个序列 X 1 n {\displaystyle {X_{1}^{n}}} ,如果它们是基于上述定义的匹配序列集合。

步骤

这个流程产生的错误可以分成两个部分:

定义: E i = { ( X 1 n ( i ) , Y 1 n ) A ϵ ( n ) } , i = 1 , 2 , . . . , 2 n R {\displaystyle E_{i}=\{(X_{1}^{n}(i),Y_{1}^{n})\in A_{\epsilon }^{(n)}\},i=1,2,...,2^{nR}}

作为消息1发送出去,消息i作为匹配的消息接收到的结果。

我们可以发现如果信道 R < I ( X ; Y ) {\displaystyle R<I(X;Y)} ,n变为无穷大,错误的可能性将降为0。

最后,假设平均的编码方式是“好”的话,我们知道存在一个编码方式的效率比平均的值要好,因此可以满足我们在有噪音的信道低误码率的要求。

假设一种编码有 2 n R {\displaystyle 2^{nR}} 个编码词语。W假设为在这个集合上的一个索引。设 X n {\displaystyle X^{n}} Y n {\displaystyle Y^{n}} 分别为编码词和接收到的词。

这些步骤的结果是 P e ( n ) 1 1 n R C R {\displaystyle P_{e}^{(n)}\geq 1-{\frac {1}{nR}}-{\frac {C}{R}}} 。当块的长度变为无穷大,如果R比C大,我们得到 P e ( n ) {\displaystyle P_{e}^{(n)}} 不可能降到0。只有在R比C小的情况下,我们可以得到任意低的误码率。

强逆定理证明由Wolfowitz于1957年提出。,证明归结于证明如下不等式,

其中 A {\displaystyle A} 为有限的正常数。当 n {\displaystyle n} 变为无穷大的时候,弱逆定理证明错误的可能性不可能变成0,而强逆定理证明了错误以指数方式趋向于1。因此, C {\displaystyle C} 是可靠连接和不可靠连接的临界点。

我们假设信道是无记忆的,但是随着时间的变化,传输的可靠性是变化的。发送端和接收端一样工作正常。这样信道容量如下

针对每个不同的信道,计算出取得该信道容量似的分布,以求得上式中的最大值,这样 C = lim inf 1 n i = 1 n C i {\displaystyle C=\liminf {\frac {1}{n}}\sum _{i=1}^{n}C_{i}} ,信道i的容量为 C i {\displaystyle C_{i}}

证明方法和上面信道编码定理几乎一样。在指定的信道里面,每一个符号的选择是随机的,编码方式也是随机的,采用渐近等同分割特性(AEP)方法来定义变化的无记忆信道的参数集。

1 n i = 1 n C i {\displaystyle {\frac {1}{n}}\sum _{i=1}^{n}C_{i}} 不收敛时,下极限开始起作用。

相关

  • 农药农药,根据美国环保署的定义,是指任何能够预防、摧毁、驱逐或减轻害虫的物质或混合物。害虫通常指与人类竞争食物,破坏财产,散播疾病或造成困扰的生命体,包括昆虫、植物病原体、杂
  • 杂草野草,一般指在庭园、草坪或农地等土地上并非刻意栽种的植物。这些植物并不只限于草本植物。更多时候,野草专指有侵害性的植物,特别是那些不需栽种而能够自行大量繁殖的植物。植
  • 高脂血症高脂血症(Hyperlipidemia,英式英文为 Hyperlipidaemia)又称高脂蛋白血症(Hyperlipoproteinemia),俗称血脂过高、高血脂,是指涉及血液任何或所有脂类以及又或脂蛋白异常升高水平的情
  • 发展迟缓广泛性发育障碍(Pervasive Developmental Disorder;简称PDD),又称社交障碍、发育迟缓,是一个与特殊性发育障碍(Specific Developmental Disorders;SDD)相对的名词,专指一组五种与多种
  • CPb有机铅化合物(英语:Organolead compounds)是指分子中带有碳-铅键的化合物,研究这一类化合物的化学分支称为“有机铅化学”(Organolead chemistry)。第一个合成的有机铅化合物是的
  • L2TP第二层隧道协议(英语:Layer Two Tunneling Protocol,缩写为L2TP)是一种虚拟隧道协议,通常用于虚拟专用网。L2TP协议自身不提供加密与可靠性验证的功能,可以和安全协议搭配使用,从而
  • 田原俊彦田原俊彦(1961年2月28日-)是日本偶像歌手、演员、艺人,出生于神奈川县横须贺市,但在山梨县甲府市长大。昵称为“小俊”(トシちゃん),与妻子向井田彩子育有一女田原可南子(日语:田原可
  • 西班牙甲组足球联赛西班牙足球甲级联赛(Liga de primera división,简称 La Liga,赞助商桑坦德银行冠名为La Liga Santander),通常简称“西甲”或“西甲联赛或世界第一联赛,是西班牙顶级足球联赛。目
  • 格雷格·阿博特格雷格·阿博特(Greg Abbott;1957年11月13日-)是美国的一位政治人物。格雷格·阿博特自2015年开始担任第48任德克萨斯州州长。格雷格·阿博特的党籍是共和党。阿博特在担任州长
  • X0性别决定系统在这个系统中,只有一种染色体,称为男性的只有一个X染色体(X0),而女性有两个(XX)。有时字母0表示缺少第二个X.母性配子总是包含X染色体,因此动物后代的性别取决于雄性配子中是否存在