有噪信道编码定理

✍ dations ◷ 2025-07-19 06:59:57 #信息论,数学定理

在信息论里,有噪信道编码定理指出,尽管噪声会干扰通信信道,但还是有可能在信息传输速率小于信道容量的前提下,以任意低的错误概率传送数据信息。这个令人惊讶的结果,有时候被称为信息原理基本定理,也叫做香农-哈特利定理或香农定理,是由克劳德·艾尔伍德·香农于1948年首次提出。

通信信道的信道容量或香农限制是指在指定的噪音标准下,信道理论上的最大传输率。

根据香农1948年的陈述,本定理描述了在不同级别的噪音干扰和数据损坏情况下,错误监测和纠正可能达到的最高效率。定理没有指出构造错误监测的模型,只是告诉大家达到的最佳效果。香农定理可以广泛应用在通信和数据存储领域。本定理是现代信息论的基础理论。香农只是提出了证明的大概提纲。1954年,艾米尔·范斯坦第一个提出了严密的论证。

香农定理假设一个有噪音的信道,信道容量为,信息以速度传送,如果

那么就存在一种编码技术使接收端收到的错误达到任意小的数值。这意味着理论上,有可能无错误地传送信息直到达到速度限制。

反过来同样重要。如果

那么想达到任意小的错误率是不可能实现的。因此,在传送速度超过信道容量的时候,可靠传输信息是不能被保证的。定理并没有指出在什么特殊情况下速度和容量相等。

简单的流程如"重复发送数据3遍,用一个投票系统在数据不一样的时候选择3个里面相同的那两个的值"是低效的错误纠正的方式,不能保证数据块能完全没有错误地传送。先进一些的技术如里德-所罗门码编码技术和更现代一些的Turbo码、LDPC码等编码技术更逼近香农限制,但是计算复杂度很高。

定理(香农,1948年):

和信息论的其它主要结果一样,噪音信道编码定理包括一个可以实现的结果和相应的相反的结果。这两个组成部分中间有一个界线。在本案例中,可以通过有噪音的信道的可能速度的集合和相应边界显示出这是一个紧密边界。

下面的证明框架只是已有的许多种不同证明方法中的一种而已。

下面这个可实现性的证明是使用渐近等同分割特性(Asymptotic equipartition property(英语:Asymptotic equipartition property) - AEP)方法。另一种信息论常用证明方法是错误列举法(Error Exponent(英语:Error Exponent))。

两种证明方法都使用随机编码参数来构造信道。这样的目的是减少计算的复杂度,同时仍旧可以证明在速度低于信道容量的时候,存在误码率在可接受范围甚至是接近于理想的无失真的编码方式。

采用AEP相关的参数,一个指定的信道,长度为n的源字符串 X 1 n {\displaystyle X_{1}^{n}}

我们可以说两个序列 X 1 n {\displaystyle {X_{1}^{n}}} ,如果它们是基于上述定义的匹配序列集合。

步骤

这个流程产生的错误可以分成两个部分:

定义: E i = { ( X 1 n ( i ) , Y 1 n ) A ϵ ( n ) } , i = 1 , 2 , . . . , 2 n R {\displaystyle E_{i}=\{(X_{1}^{n}(i),Y_{1}^{n})\in A_{\epsilon }^{(n)}\},i=1,2,...,2^{nR}}

作为消息1发送出去,消息i作为匹配的消息接收到的结果。

我们可以发现如果信道 R < I ( X ; Y ) {\displaystyle R<I(X;Y)} ,n变为无穷大,错误的可能性将降为0。

最后,假设平均的编码方式是“好”的话,我们知道存在一个编码方式的效率比平均的值要好,因此可以满足我们在有噪音的信道低误码率的要求。

假设一种编码有 2 n R {\displaystyle 2^{nR}} 个编码词语。W假设为在这个集合上的一个索引。设 X n {\displaystyle X^{n}} Y n {\displaystyle Y^{n}} 分别为编码词和接收到的词。

这些步骤的结果是 P e ( n ) 1 1 n R C R {\displaystyle P_{e}^{(n)}\geq 1-{\frac {1}{nR}}-{\frac {C}{R}}} 。当块的长度变为无穷大,如果R比C大,我们得到 P e ( n ) {\displaystyle P_{e}^{(n)}} 不可能降到0。只有在R比C小的情况下,我们可以得到任意低的误码率。

强逆定理证明由Wolfowitz于1957年提出。,证明归结于证明如下不等式,

其中 A {\displaystyle A} 为有限的正常数。当 n {\displaystyle n} 变为无穷大的时候,弱逆定理证明错误的可能性不可能变成0,而强逆定理证明了错误以指数方式趋向于1。因此, C {\displaystyle C} 是可靠连接和不可靠连接的临界点。

我们假设信道是无记忆的,但是随着时间的变化,传输的可靠性是变化的。发送端和接收端一样工作正常。这样信道容量如下

针对每个不同的信道,计算出取得该信道容量似的分布,以求得上式中的最大值,这样 C = lim inf 1 n i = 1 n C i {\displaystyle C=\liminf {\frac {1}{n}}\sum _{i=1}^{n}C_{i}} ,信道i的容量为 C i {\displaystyle C_{i}}

证明方法和上面信道编码定理几乎一样。在指定的信道里面,每一个符号的选择是随机的,编码方式也是随机的,采用渐近等同分割特性(AEP)方法来定义变化的无记忆信道的参数集。

1 n i = 1 n C i {\displaystyle {\frac {1}{n}}\sum _{i=1}^{n}C_{i}} 不收敛时,下极限开始起作用。

相关

  • 肠胃炎肠胃炎是以胃和小肠炎症为特征的胃肠道病症,可导致腹泻、呕吐、腹部的疼痛和绞痛合并而成疾病表现。虽然与流感并无关系,但该病也被称为肠胃型感冒和消化道流感。肠胃炎通常是
  • 奥曲肽奥曲肽(学名体抑素胜肽)是一种肽。它是天然生长激素、胰高血糖素和胰岛素,但在药理上模仿了天然的体抑素。它是由化学家Wilfried Bauer于1979年首次合成的。奥曲肽会用于治疗产
  • 三甲胺三甲胺(Trimethylamine,简写TMA),分子式N(CH3)3,属有机化合物,也是最简单的叔胺类化合物。三甲胺为无色气体,比空气重、吸湿、有毒且易燃。低浓度的三甲胺气体具有强烈的鱼腥气味,高
  • 烷基烷基是一类仅含有碳、氢两种原子的链状有机官能团。它们是一系列同系物,其通式为CnH2n+1。常见的有甲基CH3·(对应于甲烷)、乙基C2H5·(对应于乙烷)、丙基C3H7·(分为正丙基与异丙
  • 艾灸在古代中国,艾草就已是重要的民生植物。通常用于针灸术的“灸”。所谓针灸其实分成两个部分。“针”就是拿针刺穴道,而“灸”就是拿艾草点燃之后去薰、烫穴道,穴道受热固然有刺
  • H指数H指数(H index)是一个混合量化指标,可用于评估研究人员的学术产出数量与学术产出水平。H指数是2005年由美国加利福尼亚大学圣地亚哥分校的物理学家乔治·希尔施提出的。H指数的
  • 象虱科象虱属(学名:Haematomyzus)原是虱毛目(Phthiraptera)之下的一个属,只有三个物种。由于本属跟虱毛目其他物种的差异太大,所以独自放在象虱亚目之内,而整个象虱亚目之下亦只有象虱科一
  • 假单极假单极神经元(pseudounipolar neuron,pseudo表示假(false),uni表示“单”(one))是周围神经系统中的一个感觉神经元。这种神经元包含一个长的树突和一个连接到脊髓的短的轴突。该
  • 国际动物命名法委员会国际动物命名法委员会(International Commission on Zoological Nomenclature;缩写:ICZN)是一个负责统一、维护动物命名的国际非政府组织。它成立于1895年,现有来自19个国家的27
  • 各国人均国民总收入列表这是各国人均国民总收入列表,由世界银行提供。人均国民总收入是一个国家的最近一年的收入除以人口的价值,反映了一个国家公民的平均收入。了解一个国家的经济实力和需求,第一步