强连通分量

✍ dations ◷ 2025-09-14 05:21:21 #强连通分量

强连通分量(英语:Strongly connected component)是图论中的概念。图论中,强连通图指每一个顶点皆可以经由该图上的边抵达其他的每一个点的有向图。意即对于此图上每一个点对(Va,Vb),皆存在路径Va→Vb以及Vb→Va。强连通分量则是指一张有向图G的极大强连通子图G'。如果将每一个强连通分量缩成一个点,则原图G将会变成一张有向无环图。一张图被称为有向无环图当且仅当此图不具有点集合数量大于一的强连通分量,因为有向环即是一个强连通分量,而且任何的强连通分量皆具有至少一个有向环。

Kosaraju算法、Tarjan算法、Gabow算法(英语:Gabow's algorithm)皆为寻找有向图强连通分量的有效算法。但是由于在Tarjan算法和Gabow算法的过程中,只需要进行一次的深度优先搜索,因而相对Kosaraju算法较有效率。

另一类常用的算法 是基于连通性查询的分支算法实现。在串行的情况下算法的复杂度为O( log ),但是却可以达到很好的并行性。Blelloch等人证明了此算法在最坏情况下依然有很高的并行度(算法的span(英语:Analysis of parallel algorithms)仅为 log2 次查询)。

寻找强连通分量的算法,也可以用来解2-SAT(英语:2-satisfiability)(2-satisfiability)问题。Aspvall,Plass & Tarjan (1979)

根据Robbins理论(英语:Robbins' theorem),当一个无向图为双连接图时,也会形成强连通。

相关

  • 一国一城令一国一城令是日本在元和元年(1615年)闰6月13日由江户幕府所发布的命令。在一国(此处的“国”是指令制国,或大名的领国(之后的藩))中,由大名所居住作为政厅所在的城只能保留一个,其余
  • 伦敦市法团伦敦市法团(英语:City of London Corporation),亦称伦敦法团,是英国伦敦的市中心区——伦敦市的自治组织和地方政府。伦敦市法团的辖区只涵盖伦敦市中心的老城区,伦敦城(也叫作“伦
  • 下游 (生物过程)下游工程也称生物分离工程(bioseparation),是生物工程的一个组成部分。生物化工产品通过微生物发酵过程、酶反应过程或动植物细胞大量培养获得,从上述发酵液、反应液或培养液中
  • 钱尔福龙山坐标:45°29′40″N 7°14′48″E / 45.494444°N 7.246592°E / 45.494444; 7.246592钱尔福龙山(意大利语:Ciarforon),是意大利的山峰,位于该国西北部,由瓦莱达奥斯塔大区和皮埃蒙
  • 伊丽莎白·斯旺伊丽莎白·斯旺(英语:Elizabeth Swann)是《加勒比海盗系列电影》中的虚构人物,由凯拉·奈特莉饰演,在《鬼盗船魔咒》(2003年)、《加勒比海盗》(2006年)、《世界的尽头》(2009年)及《死
  • 常珍奇常珍奇,表字不详,汝南郡人。南北朝时期人物。常珍奇本为南朝宋官员,宋明帝时因支持晋安王刘子勋政权而反抗建康朝廷,失败后恐不获明帝赦罪而降于北魏,但不久就起兵试图叛魏南归,虽
  • 南美切叶蚁南美切叶蚁(学名:),俗称大臀蚂蚁(),是切叶蚁属十二个物种的其中一种,分布于南美洲北起委内瑞拉及哥伦比亚南部至巴拉圭以南。本物种在切叶蚁当中体型最大;而且它们一个群落所包含的个体可以高达350万只。如同其他切叶蚁,大臀蚂蚁的蚁群本身亦是一个多态性的真社会性社群,也就是说,蚁群内不同成员在其体型大小为依据来负责不同的职责。迷你工蚁,负责收集树叶以培育一种真菌,以作为该蚁群所有成员的寄托;兵蚁的下颚很突出,可以用来切割、抓握和拖拽大块碎片,并保卫著入侵者的保卫蚁群。这个物种为人类所食用的历史已有数百年:早在
  • 徐谦 (1929年)徐谦(1929年-),女,江苏武进人,中华人民共和国石油工程师,曾任山东齐鲁石化公司胜利炼油厂总工程师,第五届全国人大代表,全国三八红旗手标兵。
  • 弗朗西斯·埃斯库德罗弗朗西斯·约瑟夫·格瓦拉·埃斯库德罗(英语:Francis Joseph "Chiz" Guevara Escudero,1969年10月10日-),是菲律宾的政治家、律师,索索贡省省长,众议院少数党领袖,父亲是菲律宾的农业部长萨尔瓦多·埃斯库德罗。1969年,出生于菲律宾马尼拉的政治家庭。1993年,毕业于菲律宾大学。1996年,获得乔治敦大学国际法硕士学位。1998年,当选第11届国会议员。2000年,被任命为菲律宾海军预备役司令部司令。2007年,担任参议员。2009年,脱离国民党人民联盟。2012
  • 乌龙峡谷乌龙峡谷景区,位于北京市延庆县千家店镇沙梁子乡沙梁子村南,距县城东北51公里。乌龙峡谷景区地处黑河下游,由四个深潭构成,地貌为花岗岩沟谷,是中国延庆世界地质公园和千家店百里山水画廊景区的一部分。乌龙峡谷景区原名黑龙潭,黑河水呈青碧色,汇积成潭,故名黑龙潭。乌龙峡谷景区的四个潭中,以头潭地势最险,周围是百米直立崖壁,潭底大而潭面小,呈椭圆形。乌龙峡谷景区全长2公里,属距今1.4亿年前的中生代火山熔岩区,为典型的山间河流深切河谷地貌景观。