首页 >
模型论
✍ dations ◷ 2025-11-30 21:21:24 #模型论
模型论(英语:Model theory)一般是指数学中集合论的论述角度对数学概念表现(representation)的研究,或者说是对于作为数学系统基础的“模型”的研究。粗略地说,该学科假定有一些既存的数学“对象”,然后研究:当这些对象之间的一些运算或者一些关系乃至一组公理被给定时,可以相应证明出什么,以及如何证明。比如实数理论中一个模型论概念的例子是:我们从一个任意集合开始,作为集合元素的每个个体都是一个实数,其间有一些关系和(或)函数,例如{ ×, +, −, ., 0, 1 }。若我们在该语言中问"∃ y (y × y = 1 + 1)"这样一个问题,显然该陈述对实数而言成立 - 确实存在这样的一个实数y,即所谓2的平方根;对于有理数,该陈述却并不成立。一个类似的命题,"∃ y (y × y = 0 − 1)",在实数中不成立,却在复数中成立,因为i × i = 0 − 1。模型论研究什么是在给定的数学系统中可证的,以及这些系统相互间的关系。它特别注重研究当我们试图通过加入新公理和新语言构造时会发生什么。现在模型论(及其方法)已经广泛地应用于其它数学分支甚至理论计算机与工程计算中。例如Hrushovski用模型论方法证明了代数几何中的Mordell-Lang猜想。结构被形式的定义于某个语言L的上下文中,它由常量符号的集合,关系符号的集合,和函数符号的集合组成。在语言L上的结构,或L-结构,由如下东西组成:函数或关系的价有时也叫做元数(术语"一元"、"二元"和"n-元"中的那个元)。在语言L中的理论,或L-理论,被定义为L中的句子的集合。如果句子的集合闭合于通常的推理规则之下,则被称为闭合理论。例如,在某个特定L-结构下为真的所有句子的集合是一个闭合L-理论。L-理论T的模型由在其中T的所有句子都为真的一个L-结构组出,它通常用T-模式的方式定义。理论被称为可满足的,如果它有模型。例如,偏序的语言有一个二元关系≥。因而偏序的语言的结构就是带有≥所指示的二元关系的一个集合,它是偏序的理论的模型,如果此外它还满足偏序的公理。哥德尔完备性定理表明理论有一个模型当且仅当它是一致的,也就是说没有矛盾可以被该理论所证明。这是模型论的中心,因为它使得我们能够通过检视模型回答关于理论的问题,反之亦然。不要把完全性定理和完备理论的概念混淆。一个完备的理论是包含每个句子或其否命题的理论。重要的是,一个完备的协调理论可以通过扩展一个协调的理论得到。紧致性定理说一组语句S是可满足的(即有一个模型)当且仅当S的每一个有限子集可满足。在证明理论的范围内类似的定义是下显而易见的,因为每个证明都只能有有限量的证明前提。在模型论的范畴内这个证明就更困难了。目前已知的有两个证明方法,一个是库尔特·哥德尔提出的(通过证明论),另一个是阿纳托利·伊万诺维奇·马尔采夫提出的(这个更直接,并允许我们限制最后模型的基数)。模型论一般与一阶逻辑有关。许多模型论的重要结果(例如哥德尔完备性定理和紧致性定理)在二阶逻辑或其它可选的理论中不成立。在一阶逻辑中对于一个可数的语言,任何理论都有可数的模型。这在勒文海姆-斯科伦定理中有表达,它说对于任何可数的语言中的任何有一个无限模型都有一个可数的初等子模型。莫雷(Morley)证明了著名的范畴定理。即对于可数语言的任何可数完备理论,如果它在某个不可数基数上是范畴的,则它在所有不可基数上都是范畴的。这个定理极大的刺激了模型论的发展,产生了后来的所谓稳定性理论(stable theory)。近来模型论更加着重于对于其它数学分支,尤其是代数和代数几何的应用。
相关
- 输血相关移植物抗宿主疾病输血相关移植物抗宿主疾病(TA-GvHD)是一种罕见的输血并发症,其原因为捐血者之T淋巴球诱发免疫反应而攻击受血者之淋巴组织。 一般而言,捐血者之淋巴球会被受血者的免疫系统视为
- 脑炎脑炎(英语:encephalitis),一种急性脑部的炎症,通常由病毒感染造成。病患症状包括发烧、头痛、呕吐、意识混乱、疲倦、嗜睡和畏光。 严重的症状包括癫痫、颤抖(tremors)、幻觉、记忆
- 保护生物学保育生物学(英语:conservation biology)又称保护生物学,是一门研究自然及地球上生物多样性的学科,目的是要保护各种生物物种、栖息地和整个生态系统,避免其受到物种过快灭绝及生物
- 孔雀孔雀(学名:Pavo),是一种鸟类,属鸡形目,雉科,又名越鸟、南客。孔雀有三种,绿孔雀和蓝孔雀属于该属,而刚果孔雀单独成属。蓝孔雀又名印度孔雀,雄鸟羽毛为宝蓝色,富有金属光泽,分布在印度和
- 杨朵症候群杨朵症候群(Yentl Syndrome)是指因女性心肌梗死的症状和男性不同,所造成的问题。许多心肌梗死的医学研究主要研究男性心肌梗死的症状,而女性的心肌梗死症状可能和男性不同,因此女
- 厄文·高夫曼厄文·高夫曼(Erving Goffman,1922年6月11日-1982年11月20日)是一位美国社会学理论家,第73任美国社会学会(英语:American Sociological Association)理事长,宾夕法尼亚大学社会学教授
- 颚骨下颌骨又称下颚骨,是最大,最强的颜面骨,也是颅骨中唯一可以动的骨头,与上颌骨形成口腔。侧视图。前视图。下颌骨下颌骨外部侧视图。下颌骨内部侧视图。
- 胰胰脏也称胰腺(英语:Pancreas),旧称膵、脺,脊椎动物具有外、内分泌功能的腺体;外分泌由腺泡、连通肠腔的导管组成,腺泡分泌多种消化酶,导管上皮细胞分泌碳酸氢盐、钠、钾、氯等离子和
- 斜体斜体是在正常字体样式基础上,通过倾斜字体实现的一种字体样式;可指意大利体或伪斜体。西文中有两种形状倾斜的字体:oblique type和 Italic type,倾斜后字形也发生的变化的是“意
- 拼音文字拼音文字(英文:Phonogram)是表音文字的一种,又称“音素文字”,是以多个单音字母合并而成,拥有单音或多音节的语音文字。例如英文和法文。拼音文字和音节文字的区别是,音节文字的一
